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Abstract

Keynes (1911) derived general forms of probability density functions for which the

“most probable value” is given by the arithmetic mean, the geometric mean, the

harmonic mean, or the median. His approach was based on indirect (i.e., posterior)

distributions and used a constant prior distribution for the parameter of interest.

It was therefore equivalent to maximum likelihood (ML) estimation, the technique

later introduced by Fisher (1912).

Keynes’ results suffer from the fact that he did not discuss the supports of the

distributions, the sets of possible parameter values, and the normalising constants

required to make sure that the derived functions are indeed densities. Taking these

aspects into account, we show that several of the distributions proposed by Keynes

reduce to well-known ones, like the exponential, the Pareto, and a special case of

the generalised inverse Gaussian distribution.

Keynes’ approach based on the arithmetic, the geometric, and the harmonic mean

can be generalised to the class of quasi-arithmetic means. This generalisation allows

us to derive further results. For example, assuming that the ML estimator of the

parameter of interest is the exponential mean of the observations leads to the most

general form of an exponential family with location parameter introduced by Dynkin

(1961) and Ferguson (1962, 1963).

Keywords: ML estimator, criterion function, median, quasi-arithmetic mean,

exponential family

JEL classification: C13, C16
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1 Introduction

In his dissertation The Principles of Probability, submitted in two parts in 1907

and 1908, Keynes derived the most general forms of distributions for which the

“most probable value” is given by a “principal average.” Keynes used the latter

term to refer to the arithmetic mean, the geometric mean, the harmonic mean, and

the median. He published his results in the Journal of the Royal Statistical Society

in 1911, and he also included them as a chapter in his monograph A Treatise on

Probability (1921).

For deriving the distributions, Keynes used a technique already employed by Gauss

(1809) to show that the arithmetic mean is the “most probable value” of a nor-

mal distribution. Following Bayes’ theorem, Gauss solved his task by maximising

the “indirect probability,” which has been known as the “posterior density func-

tion” since the mid-twentieth century. Moreover, Gauss assumed an improper prior

distribution for the location parameter, more specifically a constant prior density

function on the entire domain R. This approach (referred to as the “indifference

principle,” or the “principle of insufficient reason”) was also adopted by Keynes

(1907, 1908, 1911). However, when applying the indifference principle, determin-

ing the “most probable value” by maximising the posterior distribution is formally

identical with deriving the maximum likelihood (ML) estimator by maximising the

likelihood function. Kendall & Stuart (1967, p. 677) therefore mention Keynes’

work in the context of the “characterization of distributions by forms of maximum

likelihood estimators.” Following Kendall & Stuart, throughout this paper we will

refer to Keynes’ problem as that of trying to find distributions connected with given

forms of ML estimators.

The concept of a likelihood function was first formally introduced by Fisher (1912).

Ten years later, Fisher (1922) presented a complete theory of ML estimation. Fisher’s

work is thus considered the origin of this theory – although Stigler (1978, 1986) was

able to show that ML estimation had occasionally been used before. Conniffe (1992)

argued that Fisher must have known Keynes’ 1911 paper; he conjectured that Fisher

was inspired by the fact that the distributions derived by Keynes are all members

of the exponential family, for which properties like sufficiency, completeness, and

monotony of the likelihood ratio are easily established. However, Aldrich (2008)

casts doubts on this assumption.

Keynes’ results on the laws of errors following from specific averages as “most prob-
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ably values” were hardly taken into account in the literature. Among the few ex-

ceptions are biographical accounts on J.M. Keynes’ lifework (for example, Skidel-

sky (1983, 1992, 2000) and O’Donnell (1989)), the above-mentioned paragraph in

Kendall & Stuart (1967), and a remark in Patel et al. (1976). Keynes himself con-

sidered them as minor work paling in comparison with his contributions to the logic

of probability. On page 186 of his monograph A Treatise on Probability (1921)

he remarked that the content of chapter 17 “is without philosophical interest and

should probably be omitted by most readers.” This is an appropriate recommenda-

tion for those readers who are exclusively interested in the philosophical foundations

of probability. However, readers who are into the theory of probability distributions

can gain valuable insight from this work and generalise its findings – after refining

some of Keynes’ results.

The necessary refinements are mainly related to the discussion of the supports, the

parameter domains, and the normalising constants of the derived density functions.

Keynes did not explicitly specify these aspects in his mathematical expressions. As

we will show, only in a few of the cases suggested by him the related ML estimator

does indeed turn out to be a principal average. Calculating the normalising constants

reveals that in most cases this constant depends on the parameter of interest; the

ML estimator of this parameter is then a function of a principle average. Moreover,

by including the respective normalising constants, we can show that some of the

proposed distributions reduce to ones that are well-known at least nowadays, like

the exponential, the Pareto, and a special case of the generalised inverse Gaussian

distribution – the latter one may have been unknown when Keynes published his

dissertation.

As far as the arithmetic, the geometric, and the harmonic mean are concerned,

Keynes’ approach can easily be generalised by considering the ML estimator to be

a quasi-arithmetic mean. In addition to the three types of means discussed by

Keynes, this class of mean values also includes the exponential mean and the power

mean. It can be shown that the location exponential family and a special case of

the scale exponential family can be derived when assuming that the ML estimator

is an exponential, and a power mean, respectively.

This paper is structured as follows: In Section 2, we sketch Keynes’ approach to

deriving density functions based on a general criterion function that links the ob-

servations with the parameter of interest. Moreover, we list Keynes’ results and

comment on those distributions for which the ML estimator of the parameter is
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indeed given by a mean, or the median. While Keynes introduced a general crite-

rion function, he did not discuss it any further. Section 3 is devoted to a general

criterion function connected with the quasi-arithmetic mean as the ML estimator of

the parameter of interest. After deriving general results in Section 3.1, we discuss

distributions connected with specific quasi-arithmetic means in Sections 3.2 – 3.6.

Among the concrete distributions examined are those derived by Keynes that we did

not discuss in Section 2. Calculating the respective normalising constants, we show

that in each of these cases the ML estimator of the parameter of interest is not a

mean, as Keynes assumed, but the function of a mean. Moreover, the generalisation

allows us to derive further results. For example, we demonstrate that the location

and scale exponential family can be obtained via Keynes’ approach by choosing the

criterion functions linked to the exponential mean, and the power mean.

2 Keynes’ approach and results

Keynes considers the general criterion function ψ(x; θ) linking the observation x

with the unknown parameter θ. If the observations x1, x2, . . . , xn are realisations of

random variables X1, X2, . . . , Xn that are independent and identically distributed

with probability density function f(x; θ), then the ML estimator of the unknown

parameter θ is derived by solving the equation

n∑

i=1

ψ(xi; θ) = 0 (1)

for θ. Possible choices for ψ(x; θ) include the following:

ψ(x; θ) = x− θ, (2)

ψ(x; θ) = ln
(x
θ

)
= ln x− ln θ, (3)

ψ(x; θ) =
1

x
− 1

θ
, (4)

ψ(x; θ) = sign(x− θ). (5)

It is well known that the criterion functions (2), (3), and (4) result in the ML

estimator of θ being the arithmetic, the geometric, and the harmonic mean of the

observations, respectively; criterion function (5) leads to their median.1

1This is the general approach, also used by Huber (1964) for M estimation. However, in ro-

bust statistics, the choice of ψ depends on the desired robustness and efficiency properties of the

estimator; see Huber (1981).
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Multiplying (1) with some function φ′′(θ) 6= 0 for all θ ∈ Θ with a suitable parameter

space Θ does not affect the root of the left-hand side; i.e., we can alternatively obtain

the ML estimator of θ as the solution of

n∑

i=1

ψ(xi; θ)φ
′′(θ) = 0. (6)

φ′′(θ) represents the second derivative of a function φ(θ) which is twice differentiable,

but which we otherwise do not specify any further for the time being. Defining the

function with which (1) is multiplied as a second derivative will simplify the following

expressions.

If density f is differentiable with respect to parameter θ, then under certain reg-

ularity conditions the ML estimator can be determined by solving the following

necessary condition for maximising the log-likelihood function with respect to θ:

n∑

i=1

∂ ln f(xi; θ)

∂θ
= 0. (7)

Conditions (6) and (7) are equivalent if density f satisfies the differential equation

∂ ln f(x; θ)

∂θ
= ψ(x; θ)φ′′(θ). (8)

For the related density f the ML estimator of θ is determined by (1). The solution

of differential equation (8) is immediately obtained as

f(x; θ) = K exp

(∫
ψ(x; θ)φ′′(θ)dθ + b(x)

)
, (9)

where K is a normalising constant, which Keynes (1911) assumed to be independent

of both x and θ. Using integration by parts, (9) can be transformed into

f(x; θ) = K exp

(
ψ(x; θ)φ′(θ) −

∫
∂ψ(x; θ)

∂θ
φ′(θ)dθ + b(x)

)
. (10)

Appropriately choosing ψ(x; θ) as well as φ′′(θ) and b(x), making sure that K does

not depend on θ, it is thus possible to derive a density function for which the

ML estimator of the unknown parameter θ is the one connected with the criterion

function ψ(x; θ).

Keynes made a number of implicit assumptions about the mathematical properties

of the function ψ and the parameter space Θ. For example, he restricted his con-

siderations to absolutely continuous functions; moreover, he implied that the ML
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estimator is necessarily determined by the root of the derivative of the log-likelihood

function. Teicher (1961) later characterised distributions for which the ML estima-

tor is given by the arithmetic mean, without setting these strict requirements for

differentiability.

Besides (2), (3) and (4), Keynes considered the criterion function2

ψ(x; θ) =
x− θ

|x− θ| , (11)

which is identical to (5) for x 6= θ. For each of these criterion functions, Table 1

lists the densities derived by Keynes based on different choices for φ′(θ) and b(x).

The numbers in the first column refer to the numbering in the concluding §9 on

page 331 of Keynes (1911). (Items related to numbers not included here are not

specific densities, but general results.) Keynes did not discuss the supports of the

distributions. Moreover, he did not specify the normalising constant for any of these

cases.

# ψ(x; θ) φ′(θ) b(x) Density

3 (2) 2k2θ −k2x2 K exp (−k2(x− θ)2)

6 (2) −k2eθ 0 K exp
(
−k2eθ(x− θ) − k2eθ

)

8 (3) −k2θ 0 K
(

θ
x

)k2θ
exp (−k2θ)

9 (3) 2k2 ln θ −k(ln x)2 K exp
(
−k2

(
ln x

θ

)2)

11 (4) −k2θ2 −k2x K exp
(
−k2

x
(x− θ)2

)

4 (11) k2θ −k2x x−θ
|x−θ|

K exp (−k2|x− θ|)

Table 1: Exemplary cases discussed by Keynes (1911)

The distributions # 3 and # 4 are well-known as normal distribution and Laplace

(or double exponential) distribution.

For the normal distribution, the usual parameterisation is k2 = 1/(2σ2) with σ > 0,

which implies the normalising constant K = 1/
√

2πσ2. Support and parameter

domain are both R. Of course, the ML estimators for θ is given by the arithmetic

mean.

2In fact, the first and the last criterion function considered by Keynes are (2) and (11) multiplied

by (−1), respectively. The forms used here are more common nowadays. Employing them will also

simplify the following discussion.
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With respect to Keynes’ derivation of density # 4, it should be noted that plugging

his choices of ψ(x; θ), φ′(θ), and b(x) into (10) does indeed lead to the Laplace

density; this can easily be seen since the derivative of criterion function (11) is equal

to zero, wherever it exists. However, the function b(x) used by Keynes depends on

θ, which was explicitly excluded when solving differential equation (8).

Nevertheless, the ML estimator of the parameter θ in a Laplace distribution is in

fact the median. Consider criterion function (5). Using integration by parts, the

density

f(x; θ) = K exp

(∫
sign(x− θ)φ′′(θ)dθ + b(x)

)

following from (9) can also be written as

f(x; θ) = K exp

(
|x− θ|φ′′(θ) +

∫
|x− θ|φ′′′(θ)dθ + b(x)

)
.

Choosing φ′(θ) = −k2θ, as Keynes did, and b(x) = 0 results in

f(x; θ) = K exp
(
−k2|x− θ|

)
,

the Laplace density with K = k2/2. Support and parameter domain are both R. It

is commonly known that the median is the ML estimator of the unknown parameter

of a Laplace distribution.

Keynes assumed that for all the densities he derived the ML estimator of θ is the

one connected with the respective criterion function chosen. As we have seen, he

was correct with respect to densities # 3 and # 4. However, in the next section we

will demonstrate that for the remaining cases the ML estimator is not a mean, as

Keynes supposed, but the function of a mean. Moreover, we will show that three of

the distributions identified by Keynes are in fact the exponential, the Pareto, and a

specific type of generalised inverse Gaussian distribution.

Since the arithmetic, the geometric, and the harmonic mean are special cases of

the quasi-arithmetic mean, we will first derive results for this more general class of

means. This will allow us to discuss further distributions, in addition to Keynes’

examples.
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3 Quasi-arithmetic means

3.1 General results

As a general criterion function including the cases (2), (3) and (4) considered by

Keynes, we choose

ψ(x; θ) = u(x) − u(θ), x ∈ X , θ ∈ Θ, (12)

where u is a function that is strictly monotonic a.e. in D ⊂ R, and X , Θ ⊂ D.

Note that based on (10) a particularly simple expression for the density f related

to a criterion function is obtained if ∂ψ(x; θ)/∂θ is independent of x. In this case,

we can define

C ′(θ) =

(
−∂ψ(x; θ)

∂θ

)
φ′(θ)

and write the density as

f(x; θ) = K exp

(
ψ(x; θ)

C ′(θ)

−∂ψ(x; θ)/∂θ
+ C(θ) + b(x)

)
. (13)

For criterion functions of the form (12), ∂ψ(x; θ)/∂θ = −u′(θ) is independent of x.

The related density is thus given by

f(x; θ) = K exp

(
(u(x) − u(θ))

C ′(θ)

u′(θ)
+ C(θ) + b(x)

)
, x ∈ X , θ ∈ Θ, (14)

with K such that
∫
X
f(x; θ) = 1. In the following, we will specify all densities by

choosing u(x) and C(θ) instead of ψ(x; θ) and φ′(θ), in addition to b(x).

If K does not depend on θ, as assumed by Keynes, then the ML estimator for θ can

be derived by applying the invariance property of ML estimators (Zehna (1966)):

θ̂ML = u−1

(
1

n

n∑

i=1

u(Xi)

)
, (15)

where u−1 is the inverse function of u defined on its range. This estimator is referred

to as quasi-arithmetic mean; see for example Aczél (1966, p. 276) and Bullen et al.

(1988, p. 215).

The exact definition of a quasi-arithmetic mean is as follows (see for example Jarczyk

(2007, p. 3)):
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Definition 1 Let D ⊂ R be an interval, and u : D → R be a continuous and strictly

monotonic function. Then

u−1

(
1

n

n∑

i=1

u(xi)

)

is called quasi-arithmetic mean of x1, . . . , xn ∈ D. u is referred to as the generator

of the quasi-arithmetic mean.

Note that there is no one-to-one correspondence between function u and density f .

An affine linear transformation of u(x), like v(x) = a + cu(x), results in

f(x; θ) = K exp

(
(v(x) − v(θ))

C ′(θ)

v′(θ)
+ C(θ) + b(x)

)
, x ∈ X , θ ∈ Θ,

which is equivalent with density (14). Therefore, every affine linear transformation

of a generator u leads to the same quasi-arithmetic mean. This relationship is

especially important for the Box-Cox transformation (see Box & Cox (1964), (1982)),

as illustrated in the following example:

Example 1 Consider the power function u(x) = xγ for x > 0 and γ 6= 0. Using

the generator

v(x) =
xγ − 1

γ
=
u(x)

γ
− 1

γ
, x > 0, γ 6= 0,

the Box-Cox transformation of x, we obtain the same quasi-arithmetic mean as based

on the power function u(x).

Keynes implicitly assumed that the normalising constant K never depends on the

parameter of interest. However, for an arbitrary selection of functions u(θ), C(θ),

and b(x) it may indeed be a function of θ:

K(θ) ≡
∫

exp

(
−(u(x) − u(θ))

C ′(θ)

u′(θ)
− C(θ) − b(x)

)
dx.

Therefore, the general form of the density obtained is

f(x; θ) = K(θ) exp

(
(u(x) − u(θ))

C ′(θ)

u′(θ)
+ C(θ) + b(x)

)
, x ∈ X , θ ∈ Θ. (16)

Only if K(θ) does not depend on the parameter θ (the case discussed above), then

the ML estimator of θ is a quasi-arithmetic mean. Otherwise, it is a function of
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1/n
∑n

i=1 u(Xi), and thus a function of a quasi-arithmetic mean, as the following

reasoning shows: With K depending on θ, we need to find the solution of

n∑

i=1

ln ∂f(xi; θ)

∂θ
=

n∑

i=1

(
∂ lnK(θ)

∂θ
+ (u(xi) − u(θ))

∂(C ′(θ)/u′(θ))

∂θ

)
= 0.

That is, we have to solve the equation

1

n

n∑

i=1

u(xi) = u(θ) − ∂ lnK(θ)

∂θ

1
∂(C′(θ)/u′(θ))

∂θ

≡ τ(θ). (17)

Given that τ is an injective function, the ML estimator of θ is obtained as

θ̂ML = τ−1

(
1

n

n∑

i=1

u(Xi)

)
= (τ−1 ◦ u)

(
u−1

(
1

n

n∑

i=1

u(Xi)

))
. (18)

3.2 Arithmetic mean

In this section, we discuss special cases of density (16) with u(x) = x for x ∈ X .

Making this choice results in the general form

f(x; θ) = K(θ) exp ((x− θ)C ′(θ) + C(θ) + b(x)) (19)

for x ∈ X . If K(θ) is independent of θ, then the ML estimator of θ is the arithmetic

mean of the observations.

3.2.1 Density # 6: Exponential distribution

Plugging the specific choice C(θ) = −k2eθ and b(x) = 0 into (19) immediately leads

to Keynes’ density # 6:

f(x; θ) = K(θ) exp
(
−k2eθ (x− θ) − k2eθ

)
.

Since the exponent is a linear function of x, f can only be a density if the support

X has a lower bound. We choose X = R
+. As a consequence, Θ = X = R

+ as well.

Lemma 1 The normalising constant of density # 6 is given by

K(θ) =
k2eθ

exp (k2 (eθθ − eθ))
,
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and the ML estimator of θ is

θ̂ML = − ln

(
1

n

n∑

i=1

Xi

)
− ln k2,

provided that k is known.

Proof: Since

K(θ)−1 =

∫ ∞

0

exp
(
−k2

(
eθ (x− θ) + eθ

))
dx

= exp
(
k2eθ(θ − 1)

) ∫ ∞

0

exp
(
−k2eθx

)
dx = exp

(
k2eθ(θ − 1)

) 1

k2eθ
,

the normalising constant K(θ) is indeed a function of θ, which needs to be taken

into account for ML estimation. Since

∂ lnK(θ)

∂θ
= 1 − k2θeθ and

∂(C ′(θ)/u′(θ))

∂θ
= −k2eθ,

(17) implies that

τ(θ) = θ − 1 − k2θeθ

−k2eθ
=

1

k2eθ
,

with inverse function τ−1(y) = − ln y − ln k2 for y > 0. �

In fact, density # 6 specified by Keynes is the density of an exponential distribution.

This can be shown by plugging in the normalising constant:

f(x; θ) = k2eθ exp
(
−k2eθx

)
, x > 0, θ > 0,

which is the density of an exponential distribution with parameter k2eθ. If k is

unknown, then k2 and θ are not identified. ML estimation of both θ and k2 is thus

impossible.

3.2.2 Inverse Gaussian distribution

Setting C(θ) = −k2/θ and b(x) = −k2/x − 3/2 lnx for x ∈ X and θ ∈ Θ with

X = Θ = R
+ in (19) results in

f(x; θ) = K(θ)
1√
x3

exp

(
−k2(x− θ)

1

θ2
− k2 1

θ
− k2 1

x

)

= K(θ)
1√
x3

exp

(
−k2x

2 − 2xθ + θ2

xθ2

)

= K(θ)
1√
x3

exp

(
−k2 (x− θ)2

xθ2

)
.
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This is the density of the inverse Gaussian distribution (cf. Patel et al. (1976, page

155)). The normalising constant K(θ) does in fact not dependent on θ; for the usual

parameterisation k2 = 1/(2σ2), it is given by

K(θ) =
1√

2πσ2
.

As a consequence, similar to the normal distribution the arithmetic mean of the

observations is the ML estimator of the unknown parameter θ. However, note that

θ is not a location parameter of the inverse Gaussian distribution.

3.3 Geometric mean

Let X = Θ ⊆ R
+. For u(x) = ln x with x ∈ R

+ we obtain from (16) the general

density

f(x; θ) = K(θ) exp ((ln x− ln θ)θC ′(θ) + C(θ) + b(x)) . (20)

The ML estimator of θ is the geometric mean of the observations if K(θ) does not

depend on θ.

3.3.1 Density # 8: Pareto distribution

Plugging the choice C(θ) = −k2θ and b(x) = 0 into (20) leads to Keynes’ density

# 8,

f(x; θ) = K(θ) exp
(
−(ln x− ln θ)θk2 − k2θ

)
= K(θ)

(
θ

x

)k2θ

exp
(
−k2θ

)
.

Assuming the support to be X = {x ∈ R|x > 1} guarantees that f can indeed

feature the properties of a density.

Lemma 2 Provided that k2 > 1/θ, the normalising constant in density # 8 is

derived as

K(θ) =
(
k2θ − 1

)
exp

(
k2θ(1 − ln θ)

)
.

The ML estimator of θ is then given by

θ̂ML =
1

k2

(
1 +

1

ln (
∏n

i=1Xi)
1/n

)
.
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Proof: Using the substitution y = ln x, we obtain

∫ ∞

1

exp
(
−k2θ (ln x− ln θ + 1)

)
dx = exp

(
−k2θ(1 − ln θ)

) ∫ ∞

0

eye−k2θydy

= exp
(
−k2θ(1 − ln θ)

) 1

k2θ
mY (1),

where mY (t) = k2θ/(k2θ−t) with t < k2θ represents the moment generating function

of an exponential distribution with parameter k2θ. Therefore,

K(θ) =
(
k2θ − 1

)
exp

(
k2θ(1 − ln θ)

)
=
k2θ − 1

θk2θ
exp

(
k2θ
)
.

Again, the normalising constant K(θ) depends on the parameter θ. Combining

∂ lnK(θ)

∂θ
=

k2

k2θ − 1
− k2 ln θ and

∂(C ′(θ)/u′(θ))

∂θ
= −k2

with (17) results in the transformation τ(θ) = 1/(k2θ − 1) for θ > 1/k2; thus,

τ−1(y) = (1 + 1/y)/k2 for y > 0. �

Plugging the normalising constant into the density results in a Pareto density of the

form

f(x; θ) = (k2θ − 1)
1

x(k2θ−1)+1
, x > 1,

with parameter k2θ − 1. It is well known that the ML estimator of this parameter

of the Pareto distribution is determined by the logarithm of the geometric mean;

see for example Johnson et al. (1994, p. 581). The values of k2 and θ cannot be

identified.

3.3.2 Density # 9

Keynes suggested another distribution for which the geometric mean is supposedly

the ML estimator of the unknown parameter θ. Setting C(θ) = k2(ln θ)2 and b(x) =

−k2(ln x)2 in (20) results in Keynes’ density # 9:

f(x; θ) = K(θ) exp
(
−k2

(
−2 ln x ln θ + 2(ln θ)2 − (ln θ)2 + (ln x)2

))

= K(θ) exp
(
−k2 (ln x− ln θ)2) = K(θ) exp

(
−k2

(
ln
x

θ

)2
)
.

Due to the logarithm, the support X and the parameter domain Θ are both R
+.

13



Lemma 3 The normalising constant in density # 9 is

K(θ) =
1√
π/k2

1

θ
exp

(
− 1

4k2

)
,

and the ML estimator of θ is given by

θ̂ML =

(
n∏

i=1

Xi

)1/n

e−1/(2k2).

Proof: We have

K(θ) =

(∫ ∞

0

exp
(
−k2 (ln x− ln θ)2) dx

)−1

=

(∫ ∞

−∞

exp(y) exp

(
−1

2

1

1/(2k2)
(y − ln θ)2

))−1

=

(√
2π

1

2k2
mY (1)

)−1

.

In this expression, Y represents a random variable following a normal distribution

with mean ln θ and variance 1/(2k2). mY (1) denotes the value of its moment gen-

erating function evaluated at 1, which is given by

mY (1) = exp

(
ln θ +

1

2

1

2k2

)
.

Combining results, we obtain

K(θ) =
1√
π/k2

exp

(
−
(

ln θ +
1

2

1

2k2

))
.

This normalising constant depends on θ. Plugging

∂ lnK(θ)

∂θ
= −1

θ
and

∂(C ′(θ)/u′(θ))

∂θ
= 2k21

θ

into (17) results in the transformation τ(θ) = ln θ+ 1/2k2 for θ > 0 and the inverse

transformation τ−1(y) = eye−1/(2k2). �

3.3.3 Lognormal distribution

Keynes (1911) noticed the similarity between his density # 9 and “Sir Donald McAl-

ister’s law of error.” Nowadays, the distribution discussed by McAlister (1879) is

better known as the “lognormal distribution.”

14



In fact, starting out with (20) and choosing C(θ) = k2(ln θ)2, b(x) = −k2(ln x)2−ln x

leads to the lognormal density

f(x; θ) = K(θ) exp
(
−k2

(
−2 ln x ln θ + 2(ln θ)2 − (ln θ)2 + (ln x)2

)
− ln x

)

=
K(θ)

x
exp

(
−k2 (ln x− ln θ)2) ,

where

K(θ) =
k√
π
.

For the usual parameterisation k = 1/(2σ2) with σ > 0, we obtain K(θ) = 1/
√

2πσ2.

Since the normalising constant does not depend on θ, the ML estimator of this

parameter of interest is given by the geometric mean, which is a well-known result.

3.4 Harmonic mean

Let X , Θ ⊆ R
+. Plugging u(x) = 1/x into (16) results in

f(x; θ) = K(θ) exp

(
−
(

1

x
− 1

θ

)
θ2C ′(θ) + C(θ) + b(x)

)
. (21)

If the normalising constant is independent of θ, then this density is the most general

form of a density leading to the harmonic mean as the ML estimator of θ.

Keynes’ density # 10 is obtained when additionally choosing C(θ) = k2θ and b(x) =

−k2x:

f(x; θ) = K(θ) exp

(
−
(

1

x
− 1

θ

)
θ2k2 + k2θ − k2x

)

= K(θ) exp

(
−k

2

x
(x− θ)2

)
= K(θ)e2k2θ exp

(
−k2

(
θ2

x
+ x

))
. (22)

To determine the normalising constant, we assume the support to be R
+ and make

use of the similarity between this density and the density of the so-called generalised

inverse Gaussian (GIG) distribution (see Johnson et al. (1994, p. 284f.)),

f(x;ψ, χ, r) =
(ψ/χ)r/2

2Kr(
√
ψχ)

xr−1 exp

(
−1

2

(
χ

1

x
+ ψx

))
(23)

for x > 0, ψ, χ > 0. Kr denotes a modified Bessel function of the third kind.
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Lemma 4 The normalising constant in density # 10 is given by

K(θ) =
1/θ2

2K1(2k2θ)
e−2k2θ.

The ML estimator for τ(θ) takes the form

τ̂(θ)ML =
1

n

n∑

i=1

1

Xi
=

(
1

1
n

∑n
i=1

1
Xi

)−1

,

with transformation

τ(θ) =
1

θ
− k

θ

(
1 +

∂ lnK1(2k
2θ)

∂(2k2θ)

)
− 1

2kθ2
.

Proof: Setting r = 1, ψ = 2k2, χ = 2k2θ2 in (23) results in the following density of

a GIG distribution:

f(x; k, r) =
1/θ

2K1(2k2θ)
exp

(
−k2

(
x+

θ2

x

))
.

Comparing this density with (22) reveals that

K(θ) =
1/θ

2K1(2k2θ)
e−2k2θ.

This normalising constant does indeed depend on θ. According to (17),

τ(θ) = u(θ) − ∂ lnK(θ)

∂θ

1
∂(C′(θ)/u′(θ))

∂θ

=
1

θ
−
[
−2k2

(
1 +

∂ lnK1(2k
2θ)

∂(2k2θ)

)
− 1

θ

]
· 1

−2kθ

=
1

θ
− k

θ

(
1 +

∂ lnK1(2k
2θ)

∂(2k2θ)

)
− 1

2kθ2
. �

Note that due to the modified Bessel function of the third kind τ can only be

calculated numerically. For two specific cases of k ≤ 1, Figure 1(a) shows the strictly

monotonic function τ(θ). Figures 1(b) gives two examples for a non-monotonic

function τ(θ) with k > 1.
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Figure 1: τ(θ) for density # 10

3.5 Exponential mean

Let X , Θ ⊆ R. Choosing u(x) = eγx turns (16) into

f(x; θ) = K(θ) exp

((
eγx − eγθ

) C ′(θ)

γeγθ
+ C(θ) + b(x)

)
. (24)

For densities of that form with K(θ) independent of θ, the ML estimator of this

parameter of interest is given by the quasi-arithmetic mean

u−1

(
1

n

n∑

i=1

u(Xi)

)
=

1

γ
ln

(
1

n
exp

(
n∑

i=1

γXi

))
,

which is known as the “exponential mean.”

For γ → 0 the exponential mean converges towards the arithmetic mean. Due to the

invariance of the quasi-arithmetic mean with respect to affine linear transformations,

using the generator v(x) = (eγx − 1)/γ instead of u(x) = eγx leads to the same

general density (24). Note that the transformation v(x) was used by Hoaglin (1985)

to generate a family of skewed distributions (the so-called “g distributions”) from a

normal distribution.
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Further setting C(θ) = −γrθ and b(x) = γrx for x, θ ∈ R, γ 6= 0, we derive the

density

f(x; θ) = K(θ) exp

((
eγx − eγθ

) −γr
γeγθ

− γrθ + γrx

)

= K(θ) exp
(
−reγ(x−θ) + r + γr(x− θ)

)
(25)

with

K(θ) = e−r|γ| r
r

Γ(r)
, (26)

provided that r > −1. The normalising constant is obtained immediately noticing

that eγx follows a gamma distribution. As this constant is independent of θ, the

ML estimator of θ is given by the exponential mean. Plugging (26) into (25) results

in the density derived by Dynkin (1961) and Ferguson (1962, 1963). The problem

examined by these authors is similar to the one discussed by Keynes. They searched

for the most general representation of an exponential family with location parameter

θ and obtained

f(x; θ) = |γ| r
r

Γ(r)
exp

(
−reγ(x−θ) + rγ(x− θ)

)

for x ∈ R, γ 6= 0 and r > −1. Denny (1970) and Pfanzagl (1972) later formu-

lated regularity conditions guaranteeing that this special exponential family can be

characterised via the existence of a one-dimensional sufficient statistic. Moreover,

Takeuchi (1973) and Bondesson (1975) showed that the members of this special

exponential family are the only regular distributions for which an UMVUE for the

location parameter exists. As we have seen, this family of distribution also results

as one special case of the class of distributions for which the exponential mean of

the observations is the ML estimator of the unknown parameter.

For γ → 0, when the exponential mean approaches the arithmetic mean, (25) con-

verges towards the normal distribution.

3.6 Power mean

Let X ⊆ R and Θ ⊆ R
+. For u(x) = |x|γ density (16) becomes

f(x; θ) = K(θ) exp

(
(|x|γ − θγ)

C ′(θ)

γθγ−1
+ C(θ) + b(x)

)
. (27)

18



Provided that the normalising constant is independent of θ, this is the most general

form of a density for which the ML estimator of the unknown parameter is given by

u−1

(
1

n

n∑

i=1

u(Xi)

)
=

(
1

n

n∑

i=1

|Xi|γ
)1/γ

,

a specific type of power mean.

Making the additional choice C(θ) = −rγ ln θ and b(x) = rγ ln |x| for θ > 0, x ∈ R,

γ 6= 0, we obtain the density

f(x; θ) = K(θ) exp

(
(|x|γ − θγ)

−rγ/θ
γθγ−1

− rγ ln θ + rγ ln |x|
)
. (28)

Lemma 5 The normalising constant in density (28) is given by

K(θ) =
e−r

2

|γ|
θ

rr

Γ(r)
. (29)

The ML estimator for θ takes the form

θ̂ML =

(
1

n

n∑

i=1

|Xi|γ
)1/γ

·
(

γr

γr + 1

)1/γ

.

Proof: The normalising constant can be derived by noticing that (28) is a special case

of the scale exponential family (see Ferguson (1962)). This family of distributions

is obtained when trying to find a proper distribution with a scale parameter within

the exponential family; its probability density function has the general form

f(x; θ) = p1fX(x; θ) + p2f−X(x; θ)

with p1 + p2 = 1, 0 ≤ p1, p2 ≤ 1, γ 6= 0, θ > 0, r > −1, where

fX(x; θ) =

{
0 for x < 0,
|γ|
θ

rr

Γ(r)

(
x
θ

)rγ−1
exp

(
−r
(

x
θ

)γ)
for x ≥ 0,

and

f−X(x; θ) =





|γ|
θ

rr

Γ(r)

(
|x|
θ

)rγ−1

exp
(
−r
(

|x|
θ

)γ)
for x < 0,

0 for x ≥ 0.

Choosing p1 = p2 = 1/2 results in the special case

f(x; θ) =
1

2

|γ|
θ

rr

Γ(r)

( |x|
θ

)rγ−1

exp

(
−r
( |x|
θ

)γ)
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for x ∈ R, γ 6= 0, θ > 0 and r > −1. Comparing this density with (28) it is

immediately seen that the normalising constant in the latter density is (29).

Since this normalising constant depends on θ, we need to derive the transformation

τ(θ). This is done by plugging

∂ lnK(θ)

∂θ
= −1

θ
and

∂(C ′(θ)/u′(θ))

∂θ
=

γr

θγ+1

into (17), which results in τ(θ) = θγ (1 + 1/(γr)). The inverse transformation is

therefore

τ−1(y) =

(
yγr

γr + 1

)1/γ

. �

4 Conclusions

Keynes (1911) derived densities for which the ML estimator of the unknown param-

eter is given by the arithmetic mean, the geometric mean, the harmonic mean, or the

median. In this paper, we have refined his results, mainly by calculating the respec-

tive normalising constants of these densities. As a consequence, we have seen that

in most cases the ML estimator is not a mean, but a function of a mean, because

the normalising constant depends on the parameter to be estimated. Moreover,

almost all densities have turned out to be related to simple distributions that are

well-known today, like the Pareto distribution and the generalised inverse Gaussian

distribution. Applying Keynes’ approach to the class of quasi-arithmetic means, we

have derived further general results, as well as specific distributions for which the

ML estimator of the parameter of interest is (the function of) such a mean. Among

these distributions are the location exponential family and a special case of the scale

exponential family.
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