
A Classification of Software Faults

Michael Grottke∗and Kishor S. Trivedi
Department of Electrical & Computer Engineering
Duke University, Durham, NC 27708-0291, USA

{grottke, kst}@ee.duke.edu

1. Introduction
In recent years, researchers and practitioners have re-

ported that software systems running continuously for a
long time tend to show a degraded performance, an in-
creased occurrence rate of failures (i.e., deviations of the
delivered service from the correct service) or both. This
phenomenon is referred to as “software aging”. There have
been several attempts to relate software faults (or bugs) re-
sponsible for aging to other classes of faults, like Bohrbugs
and Heisenbugs. However, the meaning attached to the lat-
ter term is not consistent throughout literature, and oftenthe
terms are used without any explicit definitions at all. In this
Fast Abstract, we propose definitions for a number of fault
classes and clarify their relationships.

2. Proposed fault classification
2.1. Bohrbugs

The term “Bohrbug”, first used in print by Gray [2],
relates to solid or hard [1] software faults, i.e., faults that
are easily detected and fixed and for which the failure
occurrences are easily reproduced. This meaning is undis-
puted in the literature, see for example [3]. In our opinion,
the terms “Bohrbug” and “Mandelbug” (see below) are
complementary antonyms; i.e., each software fault belongs
to exactly one of the two classes. We therefore propose the
following definition:

Bohrbug := A fault that is easily isolated and that mani-
fests consistently under a well-defined set of conditions, be-
cause its activation and error propagation lack “complexity”
as set out in the definition of Mandelbug. Complementary
antonym of Mandelbug.

2.2. Mandelbugs
The usual definition of a Mandelbug is “a bug whose un-

derlying causes are so complex and obscure as to make its
behavior appear chaotic and even non-deterministic” [3]. If
the “behavior” of the bug is supposed to refer to the ques-
tion whether it causes a failure or not, then “chaotic and
even non-deterministic behavior” means that under seem-
ingly identical conditions sometimes a failure occurs, while

∗Corresponding author, on leave of absence from the Chair of Statis-
tics and Econometrics, University of Erlangen-Nuremberg,Germany. This
work was supported by a fellowship within the Postdoc Program of the
German Academic Exchange Service (DAAD).

on other occasions no failure is experienced. This is another
way of expressing the fact that a failure is not systematically
reproducible, i.e., that it is caused by a soft or elusive [1]
software fault. According to our interpretation, each soft-
ware fault is either a Bohrbug or a Mandelbug. However,
if the classification of a specific fault as Mandelbug is to be
based on the judgement that the circumstances under which
it leads to a failure are “too complex” to be easily repro-
ducible, then the parting line between the two classes is es-
sentially subjective.

In order to make the classification more objective, there
is the need for an explanation of what constitutes the com-
plexity that makes a software fault a Mandelbug. We iden-
tify two possible cases that are not mutually exclusive:

Firstly, a software fault in a specific application is a Man-
delbug if the fact whether it causes a failure is influenced by
other elements of the software system apart from the appli-
cation itself, e.g., the operating system or the hardware. We
refer to the set of these elements as the “system-internal en-
vironment” of the application. The influence of the system-
internal environment can occur at any stage of the chain of
causation between the fault and the eventual failure occur-
rence; i.e., a fault is a Mandelbug if its activation and/or its
error propagation depend on interactions with the system-
internal environment of the application. (The idea for this
classification criterion is due to Shetti [4].) Examples are
faults causing failures due to side-effects of other applica-
tions and faults for which the scheduling done by the oper-
ating system is crucial for the occurrence of a failure.

Secondly, we classify a fault in an application as a Man-
delbug if complexity of the error propagation results in a
delay between the fault activation and the final failure oc-
currence. For example, an erroneous calculation due to a
fault in the software code of an application may be kept in
the memory without immediately causing the service deliv-
ered by the software system to deviate from correct service;
only later, when the result of the calculation is accessed and
used in a way that influences the system behavior perceiv-
able by the user, a failure will be experienced. In our opin-
ion, it is not possible to specify exactly how long this delay
has to be in order to make the failure occurrence appear non-
deterministic. Therefore, this second classification criterion
necessarily remains somewhat ambiguous.

Our proposed definition is as follows:

In Supplemental Proc. Sixteenth International IEEE Symposium on Software Reliability Engineering, pages 4.19–4.20, 2005. c© IEEE.

Mandelbug := A fault whose activation and/or error prop-
agation are complex, where “complexity” can take two
forms:

1. The activation and/or error propagation depend on in-
teractions between conditions occurring inside the ap-
plication and conditions that accrue within the system-
internal environment of the application.

2. There is a time lag between fault activation and failure
occurrence, e.g., because several different error states
have to be traversed in the error propagation.

Typically, a Mandelbug is difficult to isolate, and/or the
failures caused by a it are not systematically reproducible.
Complementary antonym of Bohrbug.

2.3. Heisenbugs
Gray, who wrote the earliest paper [2] mentioning

“Heisenbugs”, uses the term as a synonym for elusive faults.
Drawing upon that paper, most researchers in the field of
software rejuvenation have adopted this interpretation.

However, the term had been invented by Lindsay while
working with Gray at the University of Berkeley in the
1960s [6]. According to Lindsay, he came up with the word
for referring to a software fault that “went away, because
the measurement or the observation affected the phenomena
you were trying to see” [6]. Outside the field of software re-
juvenation, most references mentioning the word “Heisen-
bug” use it in this sense, sometimes including those soft-
ware faults whose failure behavior alters (although the fail-
ure does not completely disappear) when it is researched;
see [3]. This is the interpretation that we will follow.

An interesting collection of field reports about Heisen-
bugs [5] reveals two important categories of how trying to
observe a failure can make it disappear:

1. Some debuggers initialize unused memory to default
values. Failures related to improper initialization may
therefore go away as soon as the debugger is turned on.

2. Trying to investigate a failure can influence process
scheduling in such a way that the failure does not oc-
cur again. For example, scheduling-related failures in
multi-threaded programs may disappear when a de-
bugger is used to single-step through a process.

In both cases, the act of observing influences the failure
behavior via factors belonging to the system-internal
environment of the application in which the Heisenbug
is located. Therefore, all Heisenbugs are Mandelbugs.
Whether a Mandelbug will stop manifesting (or manifest
differently) depends on the method or tool employed for
probing or isolating it. As a consequence, a fault can only
be classified as a Heisenbug with respect to aspecificob-
servation method/tool. We suggest the following definition:

Heisenbug := A fault that stops causing a failure or that
manifests differently when one attempts to probe or isolate
it. Sub-type of Mandelbug.

2.4. Aging-related bugs
The software aging phenomenon can be explained by

the fact that the responsible faults (referred to as “aging-
related bugs”) cause errors to accumulate over time. These
error conditions may accrue either within the running ap-
plication (e.g., round-off errors in program variables) orin
the system-internal environment (e.g., unreleased physical
memory due to memory leaks in the application). In ei-
ther case, the error conditions do not lead to failures right
away - otherwise, there could be no aging -, but the fail-
ures occur with a delay. This fulfills the second criterion for
classifying the underlying faults as Mandelbugs; therefore,
all aging-related bugs are Mandelbugs. The class of aging-
related bugs of an application may or may not overlap with
the class of those software faults that are Heisenbugs with
respect to a specific observation tool or method.

Our proposed definition is as follows:

Aging-related bug := A fault that leads to the accumu-
lation of errors either inside the running application or in
its system-internal environment, resulting in an increased
failure rate and/or degraded performance. Sub-type of
Mandelbug.

A Venn diagram showing the relationships between the four
fault categories is depicted in Figure 1.

 Bohrbugs Mandelbugs

Heisen-
bugs

aging-related
bugs

Figure 1. Venn diagram of software fault types

References

[1] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Ba-
sic concepts and taxonomy of dependable and secure comput-
ing. IEEE Transactions on Dependable and Secure Comput-
ing, 1(1):11–33, 2004.

[2] J. Gray. Why do computers stop and what can be done about
it? Technical Report 85.7, PN87614, Tandem Computers,
Cupertino, 1985.

[3] E. S. Raymond. The New Hacker’s Dictionary. The MIT
Press, Cambridge, 1991.

[4] N. Shetti. Heisenbugs and Bohrbugs: Why are they differ-
ent? Technical Report DCS-TR-580, Department of Com-
puter Science, Rutgers University, Piscataway, 2005.

[5] Wiki Wiki Web. Heisen bug examples. Last modified Jan. 21,
2004, URL = http://c2.com/cgi/wiki?HeisenBugExamples
(Link verified on May 26, 2005).

[6] M. Winslett. Bruce Lindsay speaks out.ACM SIGMOD
Record, 34(2):71–79, 2005.

In Supplemental Proc. Sixteenth International IEEE Symposium on Software Reliability Engineering, pages 4.19–4.20, 2005. c© IEEE.

