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Abstract. Software managers pursuing process improvement initiatives are con-
fronted with the problem of selecting potential improvements. In the field of soft-
ware quality assurance, suitable decision support for prioritizing the optimization
of activities according to their return on investment is not yet available. Our paper
addresses this research gap. We develop a decision support scheme that facilitates
the selection and prioritization of quality assurance activities. We demonstrate
the scheme’s applicability in three industrial case studies. By relying on the well-
known COQUALMO model’s characteristics and calibration data, our approach
is industrially applicable with little data collection efforts.
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1 Introduction

For decades, users of software solutions have been suffering from poor solution qual-
ity [24]. Estimates for the United States show annual economic damages of billions
of dollars [17]. Recently, software vendors have attempted to tackle this challenge by
adapting the concepts of more mature industries, such as manufacturing [1]. This trend
can also be seen in quality assurance (QA) departments.

Software defects are typically traced by means of different QA techniques. When at-
tempting to improve the QA process, management is often confronted with the decision
which technique to improve first in order to achieve the highest possible quality gains.
Software Process Improvement (SPI) [2, 11] promises to support quality managers in
their decision-making. It is a software-industry-specific concept, defined as “changes
implemented to a software process that bring about improvements” [18]. However, a
light-weight, context-specific, and easy-to-apply SPI scheme has not yet been proposed.
We fill this research gap by developing an SPI decision support scheme. It provides
quality managers with a toolkit to prioritize improvement activities based on expected
defect reduction.
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Thereby, our approach relies on the Constructive Quality Model (COQUALMO)
[6, 7]. While COQUALMO’s objective is defect prediction, our approach attempts to
prioritize process improvements. We start with the same process assessment case study
as COQUALMO, but we focus on the defect removal part and neglect defect introduc-
tion. Our optimization approach re-uses calibration data elicited from industry experts
as provided in COQUALMO [5]. It also adapts to COQUALMO’s definition of the
defect removal model in order to determine the effect of the calibration constants on
residual defects. Since it relies on many pre-calculated values, the approach can be
applied in a highly efficient way.

The remainder of this article is structured as follows. Related work on SPI and
COQUALMO is introduced in Section 2. Section 3 presents our findings in form of the
proposed optimization approach. The applicability of this approach is demonstrated in
three industrial case studies in Section 4. Our findings are summarized in Section 5,
where we also give an outlook on future research directions.

2 Related Work

2.1 Software Process Improvement

Optimizing the processes of a company is one of the core responsibilities of its man-
agement. In business administration, various frameworks for business process improve-
ments have been developed. Deming [9] with his Shewart cycle and Womack/Jones [25]
with their Lean Thinking approach are two prominent examples. Besides targeting pro-
cess improvement in general, these two frameworks have a special focus on quality.

In the software industry, SPI has been developed as an industry-specific concept
[2,11]. It addresses the peculiarities of software engineering and is applicable to various
kinds of software projects as commercial-of-the-shelf or in-house and custom software
development.

A central part of SPI and other process improvement concepts is measurement [8,
12,15,19–21]. Statistical process control is necessary for both transparency of the status
quo and controlling the success of improvements quantitatively. Several standardized
process assessment methodologies have been developed for software engineering which
are usually referred to as ‘Software Process Capability’ or ‘Maturity Models’ [23].

Research on SPI often deals with change management practices and influence fac-
tors of SPI success (e.g. [10, 22]). We therefore address an open research question by
proposing a light-weight decision support scheme for the prioritization of quality as-
surance techniques according to how much they are expected to benefit from process
improvement.

2.2 COQUALMO

COQUALMO is a quality model aiming at the prediction of residual defects in software
development projects [6,7]. It is an extension of the project effort estimation model CO-
COMO II [3] which has successfully been implemented in various industrial settings.

The basic idea behind COQUALMO is to picture software artifacts as reservoirs
(tanks) connected by pipes, similar to a water supply system. Defects are introduced
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and removed by additional pipes representing processes that may introduce or remove
defects from the system—see Jones’ tank and pipe model [14] and Boehm’s defect
introduction and removal model [4].

COQUALMO models the introduction and the removal of defects by two separate
sub-models. The defect introduction (DI) sub-model covers the introduction of new
(non-trivial) defects into the software code. It uses a subset of the cost drivers from CO-
COMO II [3] to derive a set of 21 parameters of defect introduction. These parameters
are multiplied with the size of the software artifact. The output of the DI model is the
predicted number of requirements, design, and coding defects.

The defect removal (DR) sub-model covers the identification and elimination of
defects in later phases of the software project. Both sub-models must be applied in
order to predict the number of residual defects after test. Since the sub-models are
separate, it is possible to instantiate one without the other. We make use of this model
characteristic, because in the context of our selection approach we are only interested
in defect removal. In the following, we will therefore merely discuss the DR sub-model
in more detail.

The defect removal sub-model relies on a multiplicative and influence factor based
modeling approach. Residual defects are modeled separately for each software arti-
fact type. Like the DI sub-model, the DR sub-model classifies defects according to the
process steps in which they were created as requirements, design, and coding defects.
This classification is named ‘artifact type’ in COQUALMO, and it may easily be ex-
tended. The DR sub-model considers three different defect removal techniques, which
are called ‘profiles’ in COQUALMO:

– ‘Automated Analysis’ is a technique that statically checks the source code of a piece
of software.

– ‘Peer Reviews’ are code inspections performed by people—hence the term ‘people
reviews’ in [6].

– ‘Execution Testing and Tools’ can be seen as dynamic testing of the software prod-
uct, potentially by means of dedicated testing tools.

All these techniques can help detect defects from all artifact types, although the
defect may have been introduced in a much earlier phase. In COQUALMO, the number
of residual defects of artifact type j is estimated as

DResEst j = C j ·DIEst j ·
3

∏
i=1

(1−DRFi j)

with
j artifact type (requirements, design, or coding), j ∈ {1,2,3};
DIEst j number of defects of artifact type j, estimated based on the DI sub-model;
C j baseline (calibration factor) calculated from historical data;
i defect finding and removal techniques (automated analysis, peer reviews,

and execution testing and tools), i ∈ {1,2,3};
DRFi j defect removal factor modeling the impact of the i-th technique on the j-th

artifact.
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Fig. 1. Association between COQUALMO and our approach.

For each defect removal technique, six maturity levels ranging from ‘very low’ over
‘low’, ‘nominal’, ‘high’, and ‘very high’ to ‘extra high’ are defined based on typical
process characteristics. For each combination of artifact type j and profile i as well as
each maturity level, [6] reports a value of DRFi j determined by experts in a two-step
Delphi study.

3 Proposed Decision Support Scheme

3.1 Differentiation from COQUALMO

The optimization approach suggested in this paper is directly derived from COQUAL-
MO’s defect removal sub-model. Our selection approach does not rely on COQUAL-
MO’s defect introduction sub-model. Instead, it is based on the weighting of influence
factors by experts in form of the aforementioned two-step Delphi study. Besides the
general characteristics of the multiplicative model for defect removal, this data set is
the most important part of COQUALMO used in this study. Figure 1 illustrates how
COQUALMO and our approach are linked.

In [5], the defect removal factors are provided in table format. They are reflected
in the model definition in form of the DRFi j factors. DRFi j can be interpreted as the
fraction of defects of artifact type j that can be removed by means of defect removal
technique i. (Note that in this study COQUALMO’s concept of defect removal profiles
is referred to as defect removal techniques.) For example, a DRFi j value of 0.1 means
that 10% of the defects of artifact type j can be removed via technique i.

Due to the typical constraint in an industrial case study that its findings must justify
the data acquisition effort, usually only one artifact type j is taken into account. In most
cases this is coding, for obvious reasons. Thus, DRFi j can be reduced to DRFi since
there is no further need to distinguish between artifact types. However, this simplifi-
cation of the model is not necessary, and the selection approach as derived below can
easily be developed for multiple artifact types as well.
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Very Low Low Nominal High Very High

Automated Analysis 10% 11% 13% 25.7% 13%
Peer Review 30% 25.7% 23.1% 33% 37%
Execution Testing & Tools 38% 32% 26.2% 29% 45%

Table 1. Optimization Matrix.

Since DRFi (and DRFi j, respectively) are model variables that are assigned values
corresponding to the maturity level m found when instantiating COQUALMO, we ad-
ditionally introduce the constants DRCi,m where i is the defect removal technique and
m is its maturity level. The values of DRCi,m can directly be taken from [6].

3.2 Definition

A qualitative pre-study revealed that quality managers are very interested in prioritizing
improvements of the three techniques of automatic code analysis, peer reviews, and
execution testing and tools. Thus, our approach extends COQUALMO in a way that
provides quality management with the means to prioritize its investments into process
maturity. Since the software industry is currently striving for a higher maturity of its
processes [16], managers would like to know where to start in order to achieve the
biggest gains. In the field of quality management, these gains can be quantified in terms
of the reduction in the number of defects. In other words: If a quality manager has to
choose between process improvements in the three techniques mentioned above, s/he
should pick the one that is expected to yield the highest reduction in defects remaining
in the software.

In fact, the constants provided in COQUALMO already contain all the information
necessary for revealing the impact of moving a process to the next maturity level. Let

∆i,m = DResEst(i,m)−DResEst(i,m+1)

be the estimated number of residual defects remaining less in an artifact when the ma-
turity of defect removal technique i is upgraded from level m to level m+1. i∈ {1,2,3}
is one of the three defect removal techniques, and m ∈ {1, ...,5} represents one of the
maturity levels except ‘extra high’, which is excluded due to the impossibility of any
further improvement at this level.

Based on these concepts, we can derive

opti,m = ∆i,m/DResEst(i,m),

which is the estimated fraction by which the number of residual defects is reduced when
upgrading the process from (i,m) to (i,m+1). This expression can be simplified to

opti,m = 1−
(1−DRCi,m+1)
(1−DRCi,m)

,
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where DRCi,m denotes the constant defect reduction factor for defect removal technique
i on maturity level m for the artifact type ‘coding’ as given in [6]. opti,m is the optimiza-
tion index for moving the process for defect removal technique i from maturity level m
to m+1. As shown above, it represents the estimated fraction by which the total num-
ber of remaining defects would be reduced when a specific process is moved to the next
maturity level. The optimization index for the highest maturity level is undefined since,
by definition, at this level further improvement is impossible.

Despite restricting our industrial case studies to the artifact type ‘coding’, the above
formula can easily be extended to support COQUALMO’s other two artifact types as
well. The only necessary modification is the insertion of a third index j, denoting the
artifact type, to all variables.

Calculating the optimization index for all pairs (i,m) yields an optimization matrix
for process maturity improvement. The optimization matrix shown in Table 1 relies
exclusively on the data provided by Chulani in COQUALMO [6]. Therefore, it can
be calculated without any case-study-specific data. It’s entries give the percentage by
which the number of residual defects in coding will be reduced when raising the process
maturity by one level for the given defect removal technique.

Our selection approach will typically be instantiated by a process assessment in
order to derive the current maturity levels of the three techniques. For each technique i
and its current maturity level m, the value opti,m is then looked up in the optimization
matrix provided in Table 1. An improvement of the technique with the highest value is
expected to yield the highest possible reduction of remaining defects and, consequently,
the best impact on quality according to the COQUALMO model.

Note that we assume single steps of process improvement. This is due to our expe-
rience that it is very difficult to implement process improvements, and just as difficult
not to fall back to the old practices over time. Our assumption is in line with the recent
debate of the establishment of lean thinking and lean engineering principles in the soft-
ware industry [16, 25]. Recommeding jumps across multiple levels, for example from
‘very low’ to ‘high’, in one step would rather stem from the opposite school of thought,
namely business process re-engineering [13].

4 Case Studies

In order to demonstrate the applicability and usefulness of our approach in practice, we
conducted three case studies. One of them was concerned with the software develop-
ment unit at a medium-sized enterprise. The quality assurance processes of the chosen
project were well established, but the project itself was rather small with a team of
less than 20 developers. The other two industrial case studies were conducted at a large
European business software vendor. Here, two different development projects were cho-
sen in an innovative line of business. The team sizes were about 60 and 80 developers,
respectively. We consistently number these case studies by 1 to 3, but due to confiden-
tiality reasons we cannot provide any information on which number belongs to which
development project.

Our research methodology is interview-based. For each case study, we interviewed
five project members. Interviewees where chosen to cover a broad range of roles within
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Case Study 1 Very Low Low Nominal High Very High

Automated Analysis 10% 11% 13% 25.7%→ 3. 13%
Peer Review 30% 25.7% 23.1% 33% 37%→ 2.
Execution Testing & Tools 38% 32% 26.2% 29% 45%→ 1.

Case Study 2 Very Low Low Nominal High Very High

Automated Analysis 10% 11%→ 3. 13% 25.7% 13%
Peer Review 30% 25.7% 23.1%→ 2. 33% 37%
Execution Testing & Tools 38% 32% 26.2% 29% 45%→ 1.

Case Study 3 Very Low Low Nominal High Very High

Automated Analysis 10% 11% 13% 25.7% 13%→ 3.
Peer Review 30% 25.7% 23.1% 33% 37%→ 2.
Execution Testing & Tools 38% 32% 26.2% 29% 45%→ 1.

Table 2. Optimization Matrices for the Three Case Studies.

a project. For each case study, we interviewed the quality manager responsible for the
project and covered in addition at least four of the following job roles: developer, archi-
tect, tester, quality specialist, and project lead.

The interview was based on a questionnaire derived from the defect profile descrip-
tions in [5]. Our experience with two pre-studies conducted at projects 1 and 2 showed
that purely questionnaire-based research yields noisy data in the form of a high vari-
ation in the process maturity estimates. This is due to difficulties on the part of the
interviewees to rank their processes in an industry-wide context. We therefore asked
open questions regarding the processes to come up with a first restricted set of possible
maturity levels. In a next step, we provided our interview participants with examples
tailored to their context in order to achieve a common understanding of the maturity
levels. This methodology appeared to be a critical success factor in low-effort process
maturity assessments, since our default explanations of the different maturity levels
where often only understood after providing context-specific details and examples.

An alternative data acquisition method would have been a CMMI appraisal. How-
ever, its effort is very high compared to our approach and would not have been justi-
fiable in our setup. Nevertheless, CMMI has gained popularity, and it is recommended
to check for existing appraisals prior to conducting new interviews. Since it provides
valuable input for other business decisions, a new appraisal might also be worth the
effort when combining our approach with others.

Participants of our case study praised our efficient data acquisition methodology
and voluntarily asked us to repeat this assessment every six months for benchmarking
and controlling purposes. However, a low-effort questionnaire-based process assess-
ment methodology may introduce a bias into the data acquisition. We encourage con-
siderate evaluation of the data quality needs of a usage scenario prior to conducting a
survey.
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According to the selection scheme discussed in Section 3, we highlight the maturity
levels of the defect removal techniques in our optimization matrices in Table 2. The
improvement rank of the test activities is given to the right of the arrows. For example,
in case study 1, it would be best to invest into an improvement of execution testing
and tools. Raising the process maturity level from very high to extra high is expected
to yield a reduction of residual defects by 45%. Second-best is the improvement of
peer reviews with an improvement factor of 37%. The improvement of the automated
analysis technique from high to very high process maturity ranks third with an estimated
improvement of 25.7%.

After conducting our three case studies, we asked the participating quality man-
agers whether or not they agree with the prioritization derived by our approach. This
cross-check was successful, and most managers accepted the finding that test execution
environments are an attractive area for attaining high returns on investment in improve-
ment initiatives.

5 Conclusions

In this paper, we presented a decision support approach to prioritize three different
quality assurance techniques for selection in improvement projects. It is based on the
multiplicative model definition of COQUALMO, as well as its calibration data gath-
ered in the course of a two-step Delphi study [5]. Our approach facilitates the current
advancement of the software industry in the form of managed, lean processes. Quality
managers are able to prioritize process improvements based on their expected effect
on quality in terms of residual defects. The approach can be instantiated with low effort
due to the re-use of COQUALMO constants. It is also context-specific due to relying on
process assessments. Our approach’s applicability has successfully been demonstrated
in three industrial case studies with a medium-sized enterprise and a global player in
the software industry.

Future research is needed in order to also quantify the investment needed to raise
process maturity levels. Once these data are available, quality managers are able to eco-
nomically trade off between the expected quality enhancement yield of an improvement
initiative on the one hand and its costs on the other hand. Additionally, our approach
should be validated by conducting repetitive case studies after processes have been im-
proved and lifted to higher maturity levels. In this way, the assumptions concerning
defect reductions inherent in the Delphi-study calibration data of COQUALMO can be
cross-checked and possibly refined.

Acknowledgments

Parts of the work presented in this paper have been funded by the German Federal
Ministry of Education and Research (grants 01ISF08A and 01ISF08B).

References
1. Antony, J., Fergusson, C.: Six sigma in the software industry: results from a pilot study.

Managerial Auditing Journal 19, 1025–1032 (2004)

wss240
Platziertes Bild



9

2. Basili, V., Caldiera, G.: Improve software quality by reusing knowledge and experience.
Sloan Management Review 37(1), 55–64 (Autumn 1995)

3. Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E., Madachy, R., Riefer,
D., Steece, B.: Software Cost Estimation with COCOMO II. Prentice Hall (2000)

4. Boehm, B.W.: Software Engineering Economics. Prentice-Hall (1981)
5. Chulani, S., Boehm, B.: Modeling software defect introduction and removal: COQUALMO

(COnstructive QUALity MOdel). Tech. rep., Technical Report USC-CSE-99-510, University
of Southern California, Center for Software Engineering (1999)

6. Chulani, S.: COQUALMO (COnstructive QUAlity MOdel) a software defect density pre-
diction model. In: Kusters, Cowderoy, Heemstra, van Veenendaal (eds.) Project Control for
Software Quality. Shaker Publishing (1999)

7. Chulani, S., Steece, B.M., Boehm, B.: Case Studies in Reliability and Maintenance, chap.
Determining Software Quality Using COQUALMO, pp. 293–311. Wiley (2003)

8. DeMarco, T.: Controlling Software Projects: Management, Measurement and Estimation.
Yourdon Press, New York (1982)

9. Deming, W.E.: Out of the Crisis. MIT Press (2000)
10. Dyba, T.: An empirical investigation of the key factors for success in software process im-

provement. IEEE Transactions on Software Engineering 31(5), 410–424 (May 2005)
11. El Emam, K., Drouin, J.N., Melo, W. (eds.): SPICE: The Theory and Practice of Software

Process Improvement and Capability Determination. CS Press (1998)
12. Fenton, N., Pfleeger, S.: Software Metrics: A Rigorous and Practical Approach. Int’l Thom-

son Computer Press, London (1996)
13. Hammer, M., Champy, J.: Reengineering the Corporation. A Manifesto for Business Revo-

lution. Collins Business (2003)
14. Jones, C.: Programming defect removal. In: Proceedings, GUIDE 40 (1975)
15. Jones, C.: Applied Software Measurement: Global Analysis of Productivity and Quality.

McGraw-Hill, 3rd edn. (2008)
16. Middleton, P., Sutton, J.: Lean Software Strategies. Productivity Press (2005)
17. NIST: The economic impacts of inadequte infrastructure for software quality (2002)
18. Olson, T.G., Humphrey, W.S., Kitson, D.: Conducting SEI-assisted software process assess-

ments. Tech. rep., Carnegie Mellon University, Technical Report CMU/SEI-89-TR-7, Pitts-
burgh (1989)

19. Rifkin, S.: What makes measuring software so hard? IEEE Software 18(3), 41–45 (2001)
20. Sahraoui, H., Briand, L.C., Guhneuc, Y.G., Beaurepaire, O.: Investigating the impact of a

measurement program on software quality. Information & Software Technology 52(9), 923–
933 (2010)

21. van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: A Practical Guide for
Quality Improvement of Software Development. McGraw-Hill, London (1999)

22. Stelzer, D., Mellis, W.: Success factors of organizational change in software process im-
provement. Software Process Improvement and Practice 4(4), 227–250 (1998)

23. Von Wangenheim, C.G., Hauck, J.C.R., Zoucas, A., Salviano, C.F., McCaffery, F., Shull, F.:
Creating software process capability/maturity models. IEEE Software 27(4), 92–94 (2010)

24. Whittaker, J.A., Voas, J.M.: 50 years of software: Key principles for quality. IT Pro Nov/Dec,
28–35 (2002)

25. Womack, J.P., Jones, D.T.: Lean Thinking. Free Press, 2nd edn. (2003)

wss240
Platziertes Bild




