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Abstract 
 

We discuss availability aspects of large software-
based systems. We classify faults into Bohrbugs, 
Mandelbugs and aging-related bugs, then examine 
mitigation methods for the last two bug types. We also 
consider quantitative approaches to availability 
assurance.  
 
1. Overview 
 

High availability is being demanded for military as 
well as commercial applications such as e-commerce 
systems, financial systems, stock-trading systems, 
national and international telecommunication infra-
structure (e.g., switches and routers) and several types 
of life-critical and safety-critical systems. Many 
techniques to achieve high availability from the 
hardware perspective are known. However, software 
remains the main bottleneck in achieving high 
availability. Despite many advances in formal 
methods, programming methodology, and testing, the 
software development process has not reached the 
stage to allow for the routine production of ultra-low 
defect software systems [6]. Yet, complex software-
based mission-critical systems are expected not to fail.  

Bugs invariably remain when an application is 
deployed. A good, albeit expensive, development 
process can reduce the number of residual bugs (bugs 
that remain after the code has been tested and 
delivered) to the order of 0.1 defects per 1000 lines of 
code [31]. There are broadly two classes of these 
residual bugs in an application, known as Bohrbugs 
and Mandelbugs [25], [26]. Bohrbugs are, in principle, 
easily isolated and manifest themselves consistently 
under well-defined sets of conditions; thus, they can be 
detected and fixed during the software-testing phase, 
although some of them do remain in production. 
Preliminary results from our own investigation of a 
NASA software project suggest that 52% of residual 
bugs were Bohrbugs [24]. Mandelbugs instead have 
complex causes, making their behavior appear chaotic 
or even non-deterministic (e.g., race conditions, 

complex error propagations), thus are often difficult to 
catch and correct in the testing phase [57]. Retrying the 
same operation might not result in a failure 
manifestation. Sometimes, the literature also calls these 
software faults Heisenbugs [22], [34]. However, Bruce 
Lindsay, who invented the term deriving it from 
Heisenberg’s Uncertainty Principle, refers it to faults 
that change their behavior when probed or isolated 
[76]. Lindsay’s Heisenbugs are actually a subtype of 
Mandelbugs [25], [26]. Published data suggests that 
Mandelbugs account for between 15% and 80% of all 
software faults detected after release [12], [40]. An 
interesting subtype of Mandelbugs [25], [26] has the 
characteristic that its failure manifestation rate 
increases with the time of execution. Such faults have 
been observed in many software systems and have 
been called aging-related bugs [3], [19], [23], [44]. 
Memory leaks and round-off errors are examples of 
aging-related bugs. There appears to be no concrete 
data on what percentage of residual bugs are aging-
related. 

There are effective approaches to dealing with 
residual Bohrbugs after a software product has been 
released. If a failure due to a Bohrbug is detected in 
production, it can be reproduced in the original testing 
environment, and a patch correcting the bug or a 
workaround can be issued. Mandelbugs, however, 
often cannot be easily fixed, thus techniques to recover 
from Mandelbugs at run-time are needed. Fixing 
aging-related bugs is possible in some cases. However, 
broadly applicable cost- and time-effective run-time 
techniques exist to address aging-related bugs. We 
focus on Mandelbugs in general and aging-related bugs 
in particular. 

In general, there are two ways to improve 
availability: increase time-to-failure (TTF) and reduce 
time-to-recovery (TTR). To increase TTF, proactive 
failure avoidance techniques known as rejuvenation 
can be used for aging-related bugs. To reduce TTR, we 
propose instead escalated levels of recovery, so that 
most failures are fixed by the quickest recovery 
method and only few by the slowest ones. We are also 
interested in quantifiable availability assurance. 
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In Section 2, we discuss the use of analytic models 
for availability assurance. Section 3 describes the 
approaches to deal with Mandelbugs while Section 4 
discusses approaches to deal with aging-related bugs. 
Section 5 offers some concluding remarks. 
 
 
2. Quantified Availability Assurance 

 
In practice, availability assurance is provided 

qualitatively by means of verbal arguments or using 
checklists. Quantitative assurance of availability by 
means of stochastic availability models constructed 
based on the structure of the system hardware and 
software is very much lacking in today’s practice [62], 
[66], [68], [69]. While such analyses are nowadays 
supported by software packages [7], [58], they are not 
routinely carried out on what are touted as high 
availability products; there are only islands of such 
competency even in large companies.  

Engineers commonly use reliability block diagrams 
or fault trees to formulate and solve availability models 
because of their simplicity and efficiency [58], [67]. 
But such combinatorial models cannot easily 
incorporate realistic system behavior such as imperfect 
coverage, multiple failure modes, or hot swap [62], 
[69]. In contrast, such dependencies and multiple 
failure modes can be easily captured by state-space 
models such as Markov chains, semi-Markov 
processes [67], and Markov regenerative processes [7]. 
However, the construction, storage, and solution of 
these state space models can become prohibitive for 
real systems. The problem of large model construction 
can be alleviated by using some variation of stochastic 
Petri nets [7], but a more practical alternative is to use 
a hierarchical approach using a judicious combination 
of state space models and combinatorial models [58]. 
Such hierarchical models have been successfully used 
on practical problems including hardware availability 
prediction [39], OS failures [62], [66], [68] and 
application software failures [18], [69]. Furthermore, 
user and service-oriented measures can be computed in 
addition to system availability. Computational methods 
for such user-perceived measures are just beginning to 
be explored [59], [69], [74].   

As an example, the IBM BladeCenter is a system 
where the complexity of the system precludes 
modeling as a single-level state space model. The 
number of BladeCenter components subject to failure 
is close to 140. If each component were to be in one of 
two states only (actually some components have more 
than two states), the size of the state space of the 
overall Markov chain would be 2140. However, as 
dependencies exist in the system, an overall 

combinatorial model will not suffice. Dependencies 
within subsystems are modeled in [62] using 
homogeneous continuous-time Markov chains. 
Independence across subsystems is assumed, thus a 
combinatorial model is used to combine the subsystem 
availabilities into the overall system availability. The 
top-level model is a fault tree because some of the 
component failures affect several different portions of 
the system at the same time. Such effects are captured 
by fault trees with repeated events but cannot be 
captured by reliability block diagrams [58], [67]. Other 
methods to reduce the state space size include state 
truncation, applicable to high-level model descriptions 
such as stochastic Petri nets, so that truncation error 
bounds could be computed, and fixed-point iterations. 
Besides availability assurance, such models can also be 
used to find availability bottlenecks [59]. 

Subsequently, parameter values are needed to solve 
the models and predict system availability and related 
measures. Model input parameters can be divided into 
failure rates of hardware or software components; 
detection, failover, restart, reboot and repair delays and 
coverages; and parameters defining the user behavior. 
Hardware failure rates (actually MTTFs) are generally 
available from vendors, but software component failure 
rates are much harder to obtain. Alcatel-Lucent uses 
residual failure intensity based on a software-reliability 
growth-model as the failure rate in operation [49]. An 
alternative is to carry out controlled experiments and 
estimate software component failure rates. In fact, we 
are currently performing such experiments for the 
WebSphere Application Server and the SIP/Proxy at 
IBM. Fault injection experiments can be used to 
estimate detection, restart, reboot, and repair delays 
[33], as in the IBM SIP/SLEE modeling exercise [69]. 
Statistical inference methods for the estimations are 
well known [1], [40], [47], [53], [64]. However, 
passing the confidence intervals of input parameters 
through an analytical availability model is relatively 
unexplored [78].  

Due to many simplifying assumptions made about 
the system, its components, and their interactions and 
due to unavailability of accurate parameter values, the 
results of the abstract models cannot be taken as a true 
availability assurance. Monitoring and statistically 
inferring the observed availability is surely much more 
satisfactory assurance of availability. Off-line [21] and 
on-line [28], [50] monitoring of deployed system 
availability and related metrics can be carried out. The 
major difficulty is the amount of time needed to get 
enough data to obtain statistically significant estimates 
of availability. 
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3. Recovery from failures caused by 
Mandelbugs 
 
Reactive recovery from failures caused by 

Mandelbugs has been used for some time in the context 
of operating system failures, where reboot is the 
mitigation method [35], [68]. Restart, failover to a 
replica, and further escalated levels of recovery such as 
node reboot and repair are being successfully 
employed for application failures. Avaya’s NT-SwiFT 
and DOORS systems [20], JPL REE system [13], 
Alcatel Lucent [48], [49], [72], IBM x-series models 
[70], CORBA [52], [55], [56], and IBM SIP/SLEE 
cluster [62], [68], [69] are examples where applications 
or middleware processes are recovered using one or 
more of these techniques. To support recovery from 
Mandelbug-caused failures, multiple run-time failure 
detectors are employed to ensure that detection takes 
place within a short duration of the failure occurrence. 
In all but the rarest cases, manual detection is required. 
As, by definition, failures caused by non-aging-related 
Mandelbugs cannot be anticipated and must be reacted 
to, current research is aimed at providing design 
guidelines as to how fast recovery can be accomplished 
and obtaining quantitative assurance on the availability 
of an application.  

Stochastic models discussed in the previous section 
are beginning to be used to provide quantitative 
availability assurance [13], [20], [69], [70]. Besides 
system availability, models to compute user-perceived 
measures such as dropped calls in a switch due to 
failures are beginning to be used [36], [69]. Such 
models can capture the details of user behavior [74] or 
the details of the call flow [70] and its interactions with 
failure and recovery behavior of hardware and software 
resources. Difficulties we encounter in availability 
modeling are model size and obtaining credible input 
parameters [7], [54], [62], [69]. To deal with the large 
size of availability models for real systems, we 
typically employ a hierarchical approach where the 
top-level model is combinatorial, such as a fault tree 
[39], [62], [69] or a reliability block diagram [66], [68]. 
Lower-level stochastic models for each subsystem in 
the fault tree model are then built. These submodels are 
usually continuous-time Markov chains but if 
necessary non-Markov models [73] can be employed. 
Weak interactions between submodels can be dealt 
with using fixed-point iteration [43], [65]. The key 
advantage of such hierarchical approach is that closed-
form solution now appears feasible [59], [62] as the 
Markov submodels are typically small enough to be 
solved by Mathematica and the fault tree can be solved 
in closed-form using tools like our own SHARPE 
software package [58]. Once the closed-form solution 

is obtained, we can also carry out sensitivity analysis to 
determine bottlenecks and provide feedback for 
improvement to the designers [59]. We are currently 
working on interfacing SHARPE with Mathematica to 
facilitate such closed-form solutions. Errors in these 
approximate hierarchical models can be studied by 
comparison with discrete-event simulation and exact 
stochastic Petri net models solved numerically.  

A standby copy to failover to can be either an active 
or a passive replica. For example, the IBM SIP/SLEE 
system uses active replication, while Avaya’s SwiFT 
system uses passive replication. In active replication, 
both copies serve different requests at the same time 
and constant synchronization of data might be required 
if the data is not partitioned across replica. In passive 
replication, only one replica, the primary, executes at 
any one time while one or more backups are waiting to 
take over when the primary fails [17]. Passive 
replication can be further divided into two categories: 
warm and cold [20]. Warm replicas are periodically 
updated with state information while cold replicas are 
not. The chosen way to organize the replicas has both 
performance and availability impact. Performance 
penalty will be larger as we move from cold to warm to 
active replication while the availability will likely 
improve. Detailed availability and performance models 
can be developed for the three schemes as in [20]. 

Recovery should be tailored to different kinds of 
failures and only touch the affected system 
components. However, a recovery technique may not 
always successfully recover an application from the 
current failure, i.e., the conditional probability that a 
specific recovery technique will bring the system up 
again, given that it is attempted after a failure. is 
usually less than one. Since it is not known in advance 
which recovery technique should be used after a failure 
occurrence, a sequence of recovery procedures 
consisting of specific escalated levels or stages of 
recovery should be employed. Typically, the 
techniques are ordered according to the expected 
length of time needed for their execution: the fastest 
technique is tried first, while the last recovery stage 
may be slow but guarantees recovery. An example of 
such a sequence is: micro-rebooting of an individual 
software component in an application, restart of the 
application, fail-over, reboot of the entire node, and 
full system repair. A fundamental question is then 
whether the sequence is optimal from the perspective 
of availability. For example, should the fail-over 
precede application restart, or follow the reboot of the 
entire node? We can answer such questions using 
probabilistic availability models. Since the number of 
possible recovery actions is small, preliminary research 
suggests that an exhaustive search is adequate to 
determine the optimal sequence [27]. 
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4. Proactive recovery and aging-related 
bugs 
 
Aging-related bugs in a system are such that their 

probability of causing a failure increases with the 
length of time the system is up and running. For such 
bugs, besides reactive recovery, proactive recovery to 
clean the system internal state can effectively reduce 
the failure rate. This kind of preventive maintenance is 
known as “software rejuvenation” [5], [26], [34]. Many 
types of software systems, such as telecommunication 
software [3], [5], [34], network devices [14], web 
servers [23], [46], and military systems [44], are 
known to experience aging. Rejuvenation has been 
implemented in several kinds of software systems, 
including telecommunication billing data collection 
systems [34], transaction processing systems [10], 
spacecraft flight systems [63], distributed CORBA-
based applications [55], and cluster servers [11].  

The main advantage of planned preemptive 
procedures such as rejuvenation is that the 
consequences of sudden failures (like loss of data and 
unavailability of the entire system) are postponed or 
prevented; moreover, administrative measures can be 
scheduled to take place when the workload is low. 
However, for each such preemptive action, costs are 
incurred in the form of scheduled downtime for at least 
some part of the system. Rejuvenation can be carried 
out at different granularities: restart a software module, 
restart an entire application, perform garbage collection 
in a node, or reboot a hardware node [9], [32], [46], 
[77]. A key design question is finding the optimal 
rejuvenation schedule and granularity.  

Rejuvenation scheduling can be time-based or 
condition-based. In the former, rejuvenation is done at 
fixed time intervals [11], [15], [16], [18], [32], [34], 
[42], [70], while, in the latter, the condition of system 
resources is monitored and prediction algorithms are 
used to determine an adaptive rejuvenation schedule 
[2], [19], [61], [71], [77].  

For time-based rejuvenation, the stochastic models 
discussed in Section 2 are enhanced to incorporate 
aging-related bugs and the rejuvenation triggers at 
various levels of granularity. The resulting models are 
no longer Markov. We have solved such models using 
a combination of phase-type expansions and 
deterministic and stochastic Petri nets (DSPN) type 
techniques [41], [75]. To solve and optimize these 
models, besides the input parameters discussed in 
Section 2, we need parameters for various proactive 
recovery actions and the time to failure distribution due 
to aging-related failures. Before the system is 
deployed, a distribution and its parameters will have to 
be based on past experience. During the operation of 

the system, time to failure data can be collected and 
used to parameterize the optimization model. It is 
possible to directly use the measured time-to-failure 
data in the optimization of the rejuvenation schedule 
via the notion of total time on test (TTT) transform to 
avoid the error-prone process of fitting of this data to a 
distribution [4], [15]. The scheme is then a closed-loop 
feedback control system [29] where the “fixed-time” is 
adaptive in response to monitored time-to-failure data.  

A rejuvenation trigger interval, as computed in 
time-based rejuvenation, adapts to changing system 
conditions, but its adaptation rate is slow as it only 
responds to failure occurrences that are expected to be 
rare.  

Condition-based rejuvenation instead does not need 
time to failure inputs; it computes rejuvenation trigger 
interval by monitoring system resources and predicting 
the time to exhaustion of resources for the adaptive 
scheduling of software rejuvenation [3], [11], [19], 
[55], [71]. Garg et al. [19] measured variables such as 
free main memory, used swap space, and file table size 
in a network of UNIX workstations. These measured 
variables showed a statistically significant (decreasing 
or increasing) trend over time. Using a non-parametric 
technique, Garg et al. determine the global aging trend 
and calculate the estimated time until complete 
exhaustion via linear extrapolation for each resource. 
In case some form of rejuvenation or periodicity is 
already implemented by the system, as in the Apache 
Web server [23], piecewise linear [11], autoregressive 
time series with deterministic seasonal component 
[23], nonlinear statistical methods [30], and fractal-
based methods [60] have also been used on such data. 
Regardless of the prediction method used, the 
resources selected for monitoring must be determined 
to minimize the monitoring overhead. Design-of-
experiment (DOE) and analysis-of-variance (ANOVA) 
have been used to answer this question [45], [51]. All 
the published methods predict the times to exhaustion 
of individual resources, but time to system failure is a 
complex combination of these times. Predicting time to 
failure is an open question. 

Whatever schedule and granularity of rejuvenation 
is used, the important question is what improvement 
this implies on system availability, if any. Published 
results are based on either analytic models [70] or 
simulations [15]. Early results of a measurement 
experiment at Tokyo Institute of Technology are very 
encouraging, where rejuvenation increased the MTTF 
by a factor of two [38] on the system reported in [37].  
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5. Conclusions 
 

We have discussed models for quantifying 
availability of a software system. We have considered 
reactive recovery techniques for Mandelbugs and 
availability models that incorporate these recovery 
techniques. For aging-related bugs, a powerful 
proactive recovery technique is rejuvenation. We 
discussed rejuvenation scheduling and availability 
models for software systems when rejuvenation is used 
to deal with aging. We strongly emphasize obtaining 
model parameters from measurements as a key 
ingredient in our analytical solution framework. 

 
 
References 

 
[1] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. 

Powell. Fault injection and dependability evaluation of 
fault tolerant systems. IEEE Trans. Computers, 
42(8):913–923, 1993. 

[2] A. Avritzer, A. Bondi, M. Grottke, K. Trivedi and E. J. 
Weyuker. Performance assurance via software 
rejuvenation: monitoring, statistics and algorithms. In 
Proc. International Conference on Dependable Systems 
and Networks 2006, pp. 435-444, 2006. 

[3] A. Avritzer and E. J. Weyuker. Monitoring smoothly 
degrading systems for increased dependability.  
Empirical Software Engineering, vol. 2, no. 1, pp. 59–
77, 1997. 

[4] R. E. Barlow, and R. Campo. Total time on test 
processes and applications to failure data analysis. In R. 
E. Barlow, J. Fussell and N. D. Singpurwalla, editors, 
Reliability and Fault Tree Analysis, pp. 451-481, 
SIAM, Philadelphia, PA, 1975. 

[5] L. Bernstein and C. M. R. Kintala. Software 
rejuvenation. CrossTalk, vol. 17, no. 8, pp. 23–26, 
2004. 

[6] R. Bharadwaj. Whither verified software? In Proc. IFIP 
Working Conference on Verified Software: Theories, 
Tools, Experiments (VSTTE), Bertrand Meyer (ed.), 
LNCS 4171, Zurich Switzerland, October 2005. 

[7] G. Bolch, S. Greiner, H. de Meer, K. S. Trivedi. 
Queueing Networks and Markov Chains Modeling and 
Performance Evaluation with Computer Science 
Applications, Second Edition. John Wiley and Sons, 
New York, NY, 2006. 

[8] R. E. Bryant. Graph-based algorithms for Boolean 
function manipulation. IEEE Trans. Comp., 35(8):677–
691, Aug. 1986. 

[9] G. Candea, J. Cutler, and A. Fox. Improving 
availability with recursive microreboots: a soft-state 
system case study. Performance Evaluation, vol. 56, 
no. 1–4, pp. 213–248, 2004. 

[10] K. J. Cassidy, K. C. Gross, and A. Malekpour. 
Advanced pattern recognition for detection of complex 
software aging in online transaction processing servers. 
In Proc. International Conference on Dependable 
Systems and Networks, 2002, pp. 478–482. 

[11] V. Castelli, R. E. Harper, P. Heidelberger, S. W. 
Hunter, K. S. Trivedi, K. Vaidyanathan, and W. P. 
Zeggert. Proactive management of software aging. IBM 
Journal of Research and Development, vol. 45, no. 2, 
pp. 311–332, 2001. 

[12] S. Chandra and P. M. Chen. Whither generic recovery 
from application faults? A fault study using open-
source software. In Proc. Int’l Conf. Dependable 
Systems and Networks (DSN), , 2000, pp. 97-106. 

[13] D. Chen et al. Reliability and availability analysis for 
the JPL remote exploration and experimentation 
system. In Proc. Int’l Conf. Dependable Systems and 
Networks (DSN), Washington, DC, June 2002. 

[14] Cisco Systems. Cisco catalyst memory leak 
vulnerability. ID:13618, Cisco Security Advisory, 2001. 

[15] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi. 
Statistical Non-Parametric Algorithms to Estimate the 
Optimal Software Rejuvenation Schedule. In Proc. of 
the 2000 Pacific Rim Intl. Symp. on Dependable 
Computing (PRDC), Los Angeles, December 2000. 

[16] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi. 
Estimating software rejuvenation schedule in high 
assurance systems. The Computer Journal, vol. 44, no. 
6, pp. 473–485, 2001. 

[17] T. Dumitras, D. Srivastava, and P. Narasimhan. 
Architecting and Implementing Versatile Depend-
ability. Architecting Dependable Systems Vol. III, C. 
Gacek, A. Romanovsky and R. de Lemos, editors. 
Springer-Verlag, 2005. 

[18] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. 
Analysis of software rejuvenation using Markov 
regenerative stochastic Petri net. In Proc. Sixth 
International Symposium on Software Reliability 
Engineering, 1995, pp. 24–27. 

[19] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S. 
Trivedi. A methodology for detection and estimation of 
software aging. In Proc. Ninth International Symposium 
on Software Reliability Engineering, 1998, pp. 283–
292. 

[20] S. Garg, Y. Huang, C. M. R. Kintala, K. S. Trivedi, and 
S. Yajnik. Performance and reliability evaluation of 
passive replication schemes in application level fault 



 

In Proc. 13th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems/22nd IEEE International 
Parallel & Distributed Processing Symposium, 2008. © IEEE 6 

 

 

tolerance. In Proc. 29th Annual International 
Symposium on Fault Tolerant Computing (FTCS), pp. 
15–18, Madison, Wisconsin, June 1999. 

[21] M. Garzia. Assessing the Reliability of Windows 
Servers. Proc. DSN 2003. 

[22] J. Gray. Why do computers stop and what can be done 
about it? In Proc. 5th Symp. Reliability in Distributed 
Systems, 1986, pp. 3–12. 

[23] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi. 
Analysis of software aging in a web server. IEEE 
Transactions on Reliability, vol. 55, no. 3, Sept. 2006, 
pp. 411–420. 

[24] M. Grottke, A. Nikora, and K. S. Trivedi. Preliminary 
results from the NASA/JPL investigation, Classifying 
Software Faults to Improve Fault Detection 
Effectiveness. Dec. 2007. 

[25] M. Grottke and K. S. Trivedi. Software faults, software 
aging and software rejuvenation. Journal of the 
Reliability Engineering Association of Japan, vol. 27, 
no. 7, pp. 425-438, Oct. 2005. 

[26] M. Grottke and K. S. Trivedi. Fighting bugs: remove, 
retry, replicate and rejuvenate. IEEE Computer, vol. 40, 
no. 2, pp. 107–109, Feb. 2007. 

[27] M. Grottke and K. S. Trivedi. Analysis of the escalated 
levels of failure recovery approach. Working paper, 
University of Erlangen-Nuremberg, 2008. 

[28] M. Haberkorn and K. Trivedi. Availability monitor for 
a software based system. In Proc. HASE 2007, Dallas, 
TX. 

[29] J. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, 
Feedback Control of Computer Systems, John Wiley & 
Sons, 2004. 

[30] G. Hoffman, M. Malek, and K. S. Trivedi. A best 
practice guide to resource forecasting for the Apache 
webserver. In Proc. Pacific Rim Dependability 
Conference (PRDC), Riverside, CA, December 2006. 

[31] G. J. Holzmann. Conquering complexity. IEEE 
Computer, Dec 2007. 

[32] Y. Hong, D. Chen, L. Li and K. Trivedi. Closed loop 
design for software rejuvenation. In Proc. Workshop on 
Self-Healing, Adaptive and Self-Managed Systems. 
New York, NY. 2002. 

[33] M-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault Injection 
Techniques and Tools. IEEE Computer, April 1997. 

[34] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Soft-
ware rejuvenation: analysis, module and applications. 
In Proc. Twenty-Fifth International Symposium on 
Fault-Tolerant Computing, 1995, pp. 381–390. 

[35] S. W. Hunter and W. E. Smith. Availability modeling 
and analysis of a two node cluster. In Proc. 5th Int. 
Conf. on Information Systems, Analysis and Synthesis, 
Orlando, FL, Oct. 1999. 

[36] M. Kaaniche, K. Kanoun, and M. Martinello. A user-
perceived availability evaluation of a web based travel 
agency. In Proc. Intl. Conf. on Dependable Systems and 
Networks (DSN), 2003. 

[37] K. Kourai and S. Chiba. A fast rejuvenation technique 
for server consolidation with virtual machines. In Proc. 
International Conference on Dependable Systems and 
Networks 2007, pp. 245-255. 

[38] K. Kourai. Personal communication. January 9, 2008. 

[39] M. Lanus, Liang Yin, and K. Trivedi. Hierarchical 
composition and aggregation of state-based availability 
and performability models. IEEE Transactions on 
Reliability, Mar. 2003. 

[40] I. Lee and R.K. Iyer. Software Dependability in the 
Tandem GUARDIAN System. IEEE Trans. Software 
Engineering, May 1995, pp. 455–467. 

[41] C. Lindemann. Performance Modelling with Deter-
ministic and Stochastic Petri Nets. John Wiley and 
Sons, 1998. 

[42] Y. Liu, Y. Ma, J. Han, H. Levendel, and K. S. Trivedi. 
A proactive approach towards always-on availability in 
broadband cable networks. Computer Communications, 
28(1):51-64, Jan 2005. 

[43] V. Mainkar and K. S. Trivedi. Sufficient conditions for 
existence of a fixed point in stochastic reward net-based 
iterative methods. IEEE Transactions on Software 
Engineering, vol. 22, no. 9, pp. 640–653, 1996. 

[44] E. Marshall. Fatal error: how Patriot overlooked a Scud. 
Science, Vol. 255, p. 1347, 1992. 

[45] R. Matias Jr. and P. J. Freitas Filho. Software aging 
characterization based on a DOE approach. In Proc 1st 
Experimental Software Engineering Latin American 
Workshop, Brazil, 2004. 

[46] R. Matias Jr. and P. J. Freitas Filho. An experimental 
study on software aging and rejuvenation in web 
servers. In Proc. 30th IEEE Annual International 
Computer Software and Applications Conference, vol. 
1, pp. 189-196, 2006. 

[47] W. Q. Meeker and L. A. Escobar. Statistical Methods 
for Reliability Data. John Wiley & Sons, New York, 
1998. 

[48] V. B. Mendiratta. Reliability analysis of clustered 
computing systems. In Proc. Ninth International 
Symposium on Software Reliability Engineering, pp. 
268–272, 1999. 

[49] V. B. Mendiratta, J. M. Souza, and G. Zimmerman. 
Using software failure data for availability evaluation. 
Designer and Developer Forum, GLOBECOM 2007, 
November 27, 2007, Washington, D.C. 

[50] K. Mishra and K. S. Trivedi. Model based approach for 
autonomic availability management. In Proc. Int. 
Symposium on Service Availability, ISAS, Helsinki, 
Finland, May 2006. 



 

In Proc. 13th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems/22nd IEEE International 
Parallel & Distributed Processing Symposium, 2008. © IEEE 7 

 

 

[51] D. C. Montgomery. Design and Analysis of Experi-
ments. 6th edition, John Wiley & Sons, 2004. 

[52] P. Narasimhan, T. Dumitras¸, S. Pertet, C. F. Reverte, J. 
Slember, and D. Srivastava. MEAD: support for real-
time fault tolerant CORBA. Concurrency and 
Computation: Practice and Experience, vol. 17, no. 12, 
pp. 1527-1545, 2005. 

[53] W. Nelson, Applied Life Data Analysis. John Wiley and 
Sons, New York, 1982. 

[54] D. Nicol, W. Sanders, and K. S. Trivedi. Model-based 
evaluation: from dependability to security. IEEE 
Transactions on Dependable and Secure Computing, 
Vol. 1, 2004. 

[55] S. Pertet and P. Narasimhan. Proactive recovery in 
distributed CORBA applications. In Proc. DSN, pp. 
357-366, 2004. 

[56] S. Pertet and P. Narasimhan. Causes of failure in web 
applications. Carnegie Mellon University Parallel Data 
Lab Technical Report, CMU-PDL-05-109, December 
2005. 

[57] E. S. Raymond, The New Hacker’s Dictionary, MIT 
Press, 1991. 

[58] R. A. Sahner, K. S. Trivedi, and A. Puliafito. 
Performance and Reliability Analysis of Computer 
Systems. Kluwer Academic Press, 1996. 

[59] N Sato, H. Nakamura and K. S. Trivedi. Detecting 
performance and reliability bottlenecks of composite 
web services. In Proc. ICSOC, 2007. 

[60] M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota, 
and Y. Liu. Software aging and multifractality of 
memory resources. In Proc. Int’l Conf. Dependable 
Systems and Networks (DSN), 2003, pp. 721–730. 

[61] L. Silva, H. Madeira, and J. G. Silva. Software aging 
and rejuvenation in a SOAP-based server. Proc of Fifth 
IEEE International Symposium on Network Computing 
and Applications (NCA'06), pp. 56-65, Washington, 
DC, 2006. 

[62] W. Earl Smith, K. S. Trivedi, L. Tomek, and J. Ackeret. 
Availability analysis of multi-component blade server 
systems. IBM Systems Journal, to appear, 2008. 

[63] A. Tai, S. Chau, L. Alkalaj, and H. Hect. On-board 
preventive maintenance: a design-oriented analytic 
study for long-life applications. Performance 
Evaluation, vol. 35, nos. 3-4, pp. 215-232, May 1999. 

[64] P. Tobias and D. Trindade. Applied Reliability, 2nd 
edition. Kluwer Academic Publishers, Boston, 1995. 

[65] L. Tomek and K. S. Trivedi. Fixed-point iteration in 
availability modeling. Informatik-Fachberichte, Vol. 
283; Fehlertolerierende Rechensysteme, M.Dal Cin, 
editor, pp 229-240, Springer-Verlag, Berlin, 1991. 

[66] K. S. Trivedi. Availability analysis of Cisco GSR 
12000 and Juniper M20/M40. Cisco Technical Report, 
2000. 

[67] K. S. Trivedi. Probability & Statistics with Reliability, 
Queueing and Computer Science Applications, Second 
Edition, John Wiley, New York, 2001. 

[68] K. S. Trivedi, R. Vasireddy, D. Trindade, S. Nathan, 
and R. Castro. Modeling high availability systems. In 
Proc. Pacific Rim Dependability Conference, 2006. 

[69] K. S. Trivedi, D. Wang, J. Hunt, A. Rindos, M. 
Peyravian, and B. Pulito. IBM SIP/SLEE cluster 
reliability model. Internal document, IBM RTP, 2007, 
also Globecom 2007, D&D Forum, Washington DC. 

[70] K. Vaidyanathan, R. E. Harper, S.W. Hunter, and K. S. 
Trivedi. Analysis and implementation of software 
rejuvenation in cluster systems. In Proc. ACM 
SIGMETRICS, 2001. 

[71] K. Vaidyanathan and K. S. Trivedi. A comprehensive 
model for software rejuvenation. IEEE Transactions on 
Dependable and Secure Computing, vol. 2, no. 2, pp. 
124–137, 2005. 

[72] S. A. Vilkomir, D. L. Parnas, V. B. Mendiratta, and E. 
Murphy. Availability evaluation of hardware/software 
systems with several recovery procedures. In Proc. 
Twenty-Ninth Annual International Computer Software 
and Applications Conference, pp. 473–478, 2005. 

[73] D. Wang, R. Fricks, and K. S. Trivedi. Dealing with 
non-exponential distributions in dependability models. 
Performance Evaluation - Stories and Perspectives, G. 
Kotsis, editor, Österreichische Computer Gesellschaft, 
pp. 273-302, 2003. 

[74] D. Wang and K. S. Trivedi. Modeling user-perceived 
service availability. In Proc. of the 2nd International 
Service Availability Symposium (ISAS), Berlin, April 
2005. 

[75] D. Wang, W. Xie, and K. S. Trivedi. Performability 
analysis of clustered systems with rejuvenation under 
varying workload. Performance Evaluation, vol. 64, no. 
3, pp. 247-265, 2007. 

[76] M. Winslett. Bruce Lindsay speaks out. ACM SIGMOD 
Record, June 2005, pp. 71-79. 

[77] W. Xie, Y. Hong and K. S. Trivedi. Analysis of a two-
level software rejuvenation policy. Reliability 
Engineering and System Safety. vol. 87, no. 1, pp. 13-
22, Jan. 2005. 

[78] L. Yin, M. Smith, and K. S. Trivedi. Uncertainty 
analysis in reliability modeling. In Proc. Annual 
Reliability, Availability and Maintainability Symposium 
(RAMS), Philadelphia, PA, 2001. 

 


	1. Overview
	2. Quantified Availability Assurance
	3. Recovery from failures caused by Mandelbugs
	4. Proactive recovery and aging-related bugs
	5. Conclusions
	References

