

In Proc. 13th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems/22nd IEEE International
Parallel & Distributed Processing Symposium, 2008. © IEEE 1

Achieving and Assuring High Availability

 K. Trivedi G. Ciardo B. Dasarathy M. Grottke A. Rindos B. Vashaw
Duke University UC Riverside Telcordia Univ. Erlangen-Nbg. IBM IBM

kst@ee.duke.edu, ciardo@cs.ucr.edu, das@research.telcordia.com
michael.grottke@wiso.uni-erlangen.de, rindos@us.ibm.com, vashaw@us.ibm.com

Abstract

We discuss availability aspects of large software-
based systems. We classify faults into Bohrbugs,
Mandelbugs and aging-related bugs, then examine
mitigation methods for the last two bug types. We also
consider quantitative approaches to availability
assurance.

1. Overview

High availability is being demanded for military as
well as commercial applications such as e-commerce
systems, financial systems, stock-trading systems,
national and international telecommunication infra-
structure (e.g., switches and routers) and several types
of life-critical and safety-critical systems. Many
techniques to achieve high availability from the
hardware perspective are known. However, software
remains the main bottleneck in achieving high
availability. Despite many advances in formal
methods, programming methodology, and testing, the
software development process has not reached the
stage to allow for the routine production of ultra-low
defect software systems [6]. Yet, complex software-
based mission-critical systems are expected not to fail.

Bugs invariably remain when an application is
deployed. A good, albeit expensive, development
process can reduce the number of residual bugs (bugs
that remain after the code has been tested and
delivered) to the order of 0.1 defects per 1000 lines of
code [31]. There are broadly two classes of these
residual bugs in an application, known as Bohrbugs
and Mandelbugs [25], [26]. Bohrbugs are, in principle,
easily isolated and manifest themselves consistently
under well-defined sets of conditions; thus, they can be
detected and fixed during the software-testing phase,
although some of them do remain in production.
Preliminary results from our own investigation of a
NASA software project suggest that 52% of residual
bugs were Bohrbugs [24]. Mandelbugs instead have
complex causes, making their behavior appear chaotic
or even non-deterministic (e.g., race conditions,

complex error propagations), thus are often difficult to
catch and correct in the testing phase [57]. Retrying the
same operation might not result in a failure
manifestation. Sometimes, the literature also calls these
software faults Heisenbugs [22], [34]. However, Bruce
Lindsay, who invented the term deriving it from
Heisenberg’s Uncertainty Principle, refers it to faults
that change their behavior when probed or isolated
[76]. Lindsay’s Heisenbugs are actually a subtype of
Mandelbugs [25], [26]. Published data suggests that
Mandelbugs account for between 15% and 80% of all
software faults detected after release [12], [40]. An
interesting subtype of Mandelbugs [25], [26] has the
characteristic that its failure manifestation rate
increases with the time of execution. Such faults have
been observed in many software systems and have
been called aging-related bugs [3], [19], [23], [44].
Memory leaks and round-off errors are examples of
aging-related bugs. There appears to be no concrete
data on what percentage of residual bugs are aging-
related.

There are effective approaches to dealing with
residual Bohrbugs after a software product has been
released. If a failure due to a Bohrbug is detected in
production, it can be reproduced in the original testing
environment, and a patch correcting the bug or a
workaround can be issued. Mandelbugs, however,
often cannot be easily fixed, thus techniques to recover
from Mandelbugs at run-time are needed. Fixing
aging-related bugs is possible in some cases. However,
broadly applicable cost- and time-effective run-time
techniques exist to address aging-related bugs. We
focus on Mandelbugs in general and aging-related bugs
in particular.

In general, there are two ways to improve
availability: increase time-to-failure (TTF) and reduce
time-to-recovery (TTR). To increase TTF, proactive
failure avoidance techniques known as rejuvenation
can be used for aging-related bugs. To reduce TTR, we
propose instead escalated levels of recovery, so that
most failures are fixed by the quickest recovery
method and only few by the slowest ones. We are also
interested in quantifiable availability assurance.

In Proc. 13th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems/22nd IEEE International
Parallel & Distributed Processing Symposium, 2008. © IEEE 2

In Section 2, we discuss the use of analytic models
for availability assurance. Section 3 describes the
approaches to deal with Mandelbugs while Section 4
discusses approaches to deal with aging-related bugs.
Section 5 offers some concluding remarks.

2. Quantified Availability Assurance

In practice, availability assurance is provided

qualitatively by means of verbal arguments or using
checklists. Quantitative assurance of availability by
means of stochastic availability models constructed
based on the structure of the system hardware and
software is very much lacking in today’s practice [62],
[66], [68], [69]. While such analyses are nowadays
supported by software packages [7], [58], they are not
routinely carried out on what are touted as high
availability products; there are only islands of such
competency even in large companies.

Engineers commonly use reliability block diagrams
or fault trees to formulate and solve availability models
because of their simplicity and efficiency [58], [67].
But such combinatorial models cannot easily
incorporate realistic system behavior such as imperfect
coverage, multiple failure modes, or hot swap [62],
[69]. In contrast, such dependencies and multiple
failure modes can be easily captured by state-space
models such as Markov chains, semi-Markov
processes [67], and Markov regenerative processes [7].
However, the construction, storage, and solution of
these state space models can become prohibitive for
real systems. The problem of large model construction
can be alleviated by using some variation of stochastic
Petri nets [7], but a more practical alternative is to use
a hierarchical approach using a judicious combination
of state space models and combinatorial models [58].
Such hierarchical models have been successfully used
on practical problems including hardware availability
prediction [39], OS failures [62], [66], [68] and
application software failures [18], [69]. Furthermore,
user and service-oriented measures can be computed in
addition to system availability. Computational methods
for such user-perceived measures are just beginning to
be explored [59], [69], [74].

As an example, the IBM BladeCenter is a system
where the complexity of the system precludes
modeling as a single-level state space model. The
number of BladeCenter components subject to failure
is close to 140. If each component were to be in one of
two states only (actually some components have more
than two states), the size of the state space of the
overall Markov chain would be 2140. However, as
dependencies exist in the system, an overall

combinatorial model will not suffice. Dependencies
within subsystems are modeled in [62] using
homogeneous continuous-time Markov chains.
Independence across subsystems is assumed, thus a
combinatorial model is used to combine the subsystem
availabilities into the overall system availability. The
top-level model is a fault tree because some of the
component failures affect several different portions of
the system at the same time. Such effects are captured
by fault trees with repeated events but cannot be
captured by reliability block diagrams [58], [67]. Other
methods to reduce the state space size include state
truncation, applicable to high-level model descriptions
such as stochastic Petri nets, so that truncation error
bounds could be computed, and fixed-point iterations.
Besides availability assurance, such models can also be
used to find availability bottlenecks [59].

Subsequently, parameter values are needed to solve
the models and predict system availability and related
measures. Model input parameters can be divided into
failure rates of hardware or software components;
detection, failover, restart, reboot and repair delays and
coverages; and parameters defining the user behavior.
Hardware failure rates (actually MTTFs) are generally
available from vendors, but software component failure
rates are much harder to obtain. Alcatel-Lucent uses
residual failure intensity based on a software-reliability
growth-model as the failure rate in operation [49]. An
alternative is to carry out controlled experiments and
estimate software component failure rates. In fact, we
are currently performing such experiments for the
WebSphere Application Server and the SIP/Proxy at
IBM. Fault injection experiments can be used to
estimate detection, restart, reboot, and repair delays
[33], as in the IBM SIP/SLEE modeling exercise [69].
Statistical inference methods for the estimations are
well known [1], [40], [47], [53], [64]. However,
passing the confidence intervals of input parameters
through an analytical availability model is relatively
unexplored [78].

Due to many simplifying assumptions made about
the system, its components, and their interactions and
due to unavailability of accurate parameter values, the
results of the abstract models cannot be taken as a true
availability assurance. Monitoring and statistically
inferring the observed availability is surely much more
satisfactory assurance of availability. Off-line [21] and
on-line [28], [50] monitoring of deployed system
availability and related metrics can be carried out. The
major difficulty is the amount of time needed to get
enough data to obtain statistically significant estimates
of availability.

In Proc. 13th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems/22nd IEEE International
Parallel & Distributed Processing Symposium, 2008. © IEEE 3

3. Recovery from failures caused by
Mandelbugs

Reactive recovery from failures caused by

Mandelbugs has been used for some time in the context
of operating system failures, where reboot is the
mitigation method [35], [68]. Restart, failover to a
replica, and further escalated levels of recovery such as
node reboot and repair are being successfully
employed for application failures. Avaya’s NT-SwiFT
and DOORS systems [20], JPL REE system [13],
Alcatel Lucent [48], [49], [72], IBM x-series models
[70], CORBA [52], [55], [56], and IBM SIP/SLEE
cluster [62], [68], [69] are examples where applications
or middleware processes are recovered using one or
more of these techniques. To support recovery from
Mandelbug-caused failures, multiple run-time failure
detectors are employed to ensure that detection takes
place within a short duration of the failure occurrence.
In all but the rarest cases, manual detection is required.
As, by definition, failures caused by non-aging-related
Mandelbugs cannot be anticipated and must be reacted
to, current research is aimed at providing design
guidelines as to how fast recovery can be accomplished
and obtaining quantitative assurance on the availability
of an application.

Stochastic models discussed in the previous section
are beginning to be used to provide quantitative
availability assurance [13], [20], [69], [70]. Besides
system availability, models to compute user-perceived
measures such as dropped calls in a switch due to
failures are beginning to be used [36], [69]. Such
models can capture the details of user behavior [74] or
the details of the call flow [70] and its interactions with
failure and recovery behavior of hardware and software
resources. Difficulties we encounter in availability
modeling are model size and obtaining credible input
parameters [7], [54], [62], [69]. To deal with the large
size of availability models for real systems, we
typically employ a hierarchical approach where the
top-level model is combinatorial, such as a fault tree
[39], [62], [69] or a reliability block diagram [66], [68].
Lower-level stochastic models for each subsystem in
the fault tree model are then built. These submodels are
usually continuous-time Markov chains but if
necessary non-Markov models [73] can be employed.
Weak interactions between submodels can be dealt
with using fixed-point iteration [43], [65]. The key
advantage of such hierarchical approach is that closed-
form solution now appears feasible [59], [62] as the
Markov submodels are typically small enough to be
solved by Mathematica and the fault tree can be solved
in closed-form using tools like our own SHARPE
software package [58]. Once the closed-form solution

is obtained, we can also carry out sensitivity analysis to
determine bottlenecks and provide feedback for
improvement to the designers [59]. We are currently
working on interfacing SHARPE with Mathematica to
facilitate such closed-form solutions. Errors in these
approximate hierarchical models can be studied by
comparison with discrete-event simulation and exact
stochastic Petri net models solved numerically.

A standby copy to failover to can be either an active
or a passive replica. For example, the IBM SIP/SLEE
system uses active replication, while Avaya’s SwiFT
system uses passive replication. In active replication,
both copies serve different requests at the same time
and constant synchronization of data might be required
if the data is not partitioned across replica. In passive
replication, only one replica, the primary, executes at
any one time while one or more backups are waiting to
take over when the primary fails [17]. Passive
replication can be further divided into two categories:
warm and cold [20]. Warm replicas are periodically
updated with state information while cold replicas are
not. The chosen way to organize the replicas has both
performance and availability impact. Performance
penalty will be larger as we move from cold to warm to
active replication while the availability will likely
improve. Detailed availability and performance models
can be developed for the three schemes as in [20].

Recovery should be tailored to different kinds of
failures and only touch the affected system
components. However, a recovery technique may not
always successfully recover an application from the
current failure, i.e., the conditional probability that a
specific recovery technique will bring the system up
again, given that it is attempted after a failure. is
usually less than one. Since it is not known in advance
which recovery technique should be used after a failure
occurrence, a sequence of recovery procedures
consisting of specific escalated levels or stages of
recovery should be employed. Typically, the
techniques are ordered according to the expected
length of time needed for their execution: the fastest
technique is tried first, while the last recovery stage
may be slow but guarantees recovery. An example of
such a sequence is: micro-rebooting of an individual
software component in an application, restart of the
application, fail-over, reboot of the entire node, and
full system repair. A fundamental question is then
whether the sequence is optimal from the perspective
of availability. For example, should the fail-over
precede application restart, or follow the reboot of the
entire node? We can answer such questions using
probabilistic availability models. Since the number of
possible recovery actions is small, preliminary research
suggests that an exhaustive search is adequate to
determine the optimal sequence [27].

In Proc. 13th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems/22nd IEEE International
Parallel & Distributed Processing Symposium, 2008. © IEEE 4

4. Proactive recovery and aging-related
bugs

Aging-related bugs in a system are such that their

probability of causing a failure increases with the
length of time the system is up and running. For such
bugs, besides reactive recovery, proactive recovery to
clean the system internal state can effectively reduce
the failure rate. This kind of preventive maintenance is
known as “software rejuvenation” [5], [26], [34]. Many
types of software systems, such as telecommunication
software [3], [5], [34], network devices [14], web
servers [23], [46], and military systems [44], are
known to experience aging. Rejuvenation has been
implemented in several kinds of software systems,
including telecommunication billing data collection
systems [34], transaction processing systems [10],
spacecraft flight systems [63], distributed CORBA-
based applications [55], and cluster servers [11].

The main advantage of planned preemptive
procedures such as rejuvenation is that the
consequences of sudden failures (like loss of data and
unavailability of the entire system) are postponed or
prevented; moreover, administrative measures can be
scheduled to take place when the workload is low.
However, for each such preemptive action, costs are
incurred in the form of scheduled downtime for at least
some part of the system. Rejuvenation can be carried
out at different granularities: restart a software module,
restart an entire application, perform garbage collection
in a node, or reboot a hardware node [9], [32], [46],
[77]. A key design question is finding the optimal
rejuvenation schedule and granularity.

Rejuvenation scheduling can be time-based or
condition-based. In the former, rejuvenation is done at
fixed time intervals [11], [15], [16], [18], [32], [34],
[42], [70], while, in the latter, the condition of system
resources is monitored and prediction algorithms are
used to determine an adaptive rejuvenation schedule
[2], [19], [61], [71], [77].

For time-based rejuvenation, the stochastic models
discussed in Section 2 are enhanced to incorporate
aging-related bugs and the rejuvenation triggers at
various levels of granularity. The resulting models are
no longer Markov. We have solved such models using
a combination of phase-type expansions and
deterministic and stochastic Petri nets (DSPN) type
techniques [41], [75]. To solve and optimize these
models, besides the input parameters discussed in
Section 2, we need parameters for various proactive
recovery actions and the time to failure distribution due
to aging-related failures. Before the system is
deployed, a distribution and its parameters will have to
be based on past experience. During the operation of

the system, time to failure data can be collected and
used to parameterize the optimization model. It is
possible to directly use the measured time-to-failure
data in the optimization of the rejuvenation schedule
via the notion of total time on test (TTT) transform to
avoid the error-prone process of fitting of this data to a
distribution [4], [15]. The scheme is then a closed-loop
feedback control system [29] where the “fixed-time” is
adaptive in response to monitored time-to-failure data.

A rejuvenation trigger interval, as computed in
time-based rejuvenation, adapts to changing system
conditions, but its adaptation rate is slow as it only
responds to failure occurrences that are expected to be
rare.

Condition-based rejuvenation instead does not need
time to failure inputs; it computes rejuvenation trigger
interval by monitoring system resources and predicting
the time to exhaustion of resources for the adaptive
scheduling of software rejuvenation [3], [11], [19],
[55], [71]. Garg et al. [19] measured variables such as
free main memory, used swap space, and file table size
in a network of UNIX workstations. These measured
variables showed a statistically significant (decreasing
or increasing) trend over time. Using a non-parametric
technique, Garg et al. determine the global aging trend
and calculate the estimated time until complete
exhaustion via linear extrapolation for each resource.
In case some form of rejuvenation or periodicity is
already implemented by the system, as in the Apache
Web server [23], piecewise linear [11], autoregressive
time series with deterministic seasonal component
[23], nonlinear statistical methods [30], and fractal-
based methods [60] have also been used on such data.
Regardless of the prediction method used, the
resources selected for monitoring must be determined
to minimize the monitoring overhead. Design-of-
experiment (DOE) and analysis-of-variance (ANOVA)
have been used to answer this question [45], [51]. All
the published methods predict the times to exhaustion
of individual resources, but time to system failure is a
complex combination of these times. Predicting time to
failure is an open question.

Whatever schedule and granularity of rejuvenation
is used, the important question is what improvement
this implies on system availability, if any. Published
results are based on either analytic models [70] or
simulations [15]. Early results of a measurement
experiment at Tokyo Institute of Technology are very
encouraging, where rejuvenation increased the MTTF
by a factor of two [38] on the system reported in [37].

In Proc. 13th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems/22nd IEEE International
Parallel & Distributed Processing Symposium, 2008. © IEEE 5

5. Conclusions

We have discussed models for quantifying
availability of a software system. We have considered
reactive recovery techniques for Mandelbugs and
availability models that incorporate these recovery
techniques. For aging-related bugs, a powerful
proactive recovery technique is rejuvenation. We
discussed rejuvenation scheduling and availability
models for software systems when rejuvenation is used
to deal with aging. We strongly emphasize obtaining
model parameters from measurements as a key
ingredient in our analytical solution framework.

References

[1] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D.

Powell. Fault injection and dependability evaluation of
fault tolerant systems. IEEE Trans. Computers,
42(8):913–923, 1993.

[2] A. Avritzer, A. Bondi, M. Grottke, K. Trivedi and E. J.
Weyuker. Performance assurance via software
rejuvenation: monitoring, statistics and algorithms. In
Proc. International Conference on Dependable Systems
and Networks 2006, pp. 435-444, 2006.

[3] A. Avritzer and E. J. Weyuker. Monitoring smoothly
degrading systems for increased dependability.
Empirical Software Engineering, vol. 2, no. 1, pp. 59–
77, 1997.

[4] R. E. Barlow, and R. Campo. Total time on test
processes and applications to failure data analysis. In R.
E. Barlow, J. Fussell and N. D. Singpurwalla, editors,
Reliability and Fault Tree Analysis, pp. 451-481,
SIAM, Philadelphia, PA, 1975.

[5] L. Bernstein and C. M. R. Kintala. Software
rejuvenation. CrossTalk, vol. 17, no. 8, pp. 23–26,
2004.

[6] R. Bharadwaj. Whither verified software? In Proc. IFIP
Working Conference on Verified Software: Theories,
Tools, Experiments (VSTTE), Bertrand Meyer (ed.),
LNCS 4171, Zurich Switzerland, October 2005.

[7] G. Bolch, S. Greiner, H. de Meer, K. S. Trivedi.
Queueing Networks and Markov Chains Modeling and
Performance Evaluation with Computer Science
Applications, Second Edition. John Wiley and Sons,
New York, NY, 2006.

[8] R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Trans. Comp., 35(8):677–
691, Aug. 1986.

[9] G. Candea, J. Cutler, and A. Fox. Improving
availability with recursive microreboots: a soft-state
system case study. Performance Evaluation, vol. 56,
no. 1–4, pp. 213–248, 2004.

[10] K. J. Cassidy, K. C. Gross, and A. Malekpour.
Advanced pattern recognition for detection of complex
software aging in online transaction processing servers.
In Proc. International Conference on Dependable
Systems and Networks, 2002, pp. 478–482.

[11] V. Castelli, R. E. Harper, P. Heidelberger, S. W.
Hunter, K. S. Trivedi, K. Vaidyanathan, and W. P.
Zeggert. Proactive management of software aging. IBM
Journal of Research and Development, vol. 45, no. 2,
pp. 311–332, 2001.

[12] S. Chandra and P. M. Chen. Whither generic recovery
from application faults? A fault study using open-
source software. In Proc. Int’l Conf. Dependable
Systems and Networks (DSN), , 2000, pp. 97-106.

[13] D. Chen et al. Reliability and availability analysis for
the JPL remote exploration and experimentation
system. In Proc. Int’l Conf. Dependable Systems and
Networks (DSN), Washington, DC, June 2002.

[14] Cisco Systems. Cisco catalyst memory leak
vulnerability. ID:13618, Cisco Security Advisory, 2001.

[15] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi.
Statistical Non-Parametric Algorithms to Estimate the
Optimal Software Rejuvenation Schedule. In Proc. of
the 2000 Pacific Rim Intl. Symp. on Dependable
Computing (PRDC), Los Angeles, December 2000.

[16] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi.
Estimating software rejuvenation schedule in high
assurance systems. The Computer Journal, vol. 44, no.
6, pp. 473–485, 2001.

[17] T. Dumitras, D. Srivastava, and P. Narasimhan.
Architecting and Implementing Versatile Depend-
ability. Architecting Dependable Systems Vol. III, C.
Gacek, A. Romanovsky and R. de Lemos, editors.
Springer-Verlag, 2005.

[18] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi.
Analysis of software rejuvenation using Markov
regenerative stochastic Petri net. In Proc. Sixth
International Symposium on Software Reliability
Engineering, 1995, pp. 24–27.

[19] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S.
Trivedi. A methodology for detection and estimation of
software aging. In Proc. Ninth International Symposium
on Software Reliability Engineering, 1998, pp. 283–
292.

[20] S. Garg, Y. Huang, C. M. R. Kintala, K. S. Trivedi, and
S. Yajnik. Performance and reliability evaluation of
passive replication schemes in application level fault

In Proc. 13th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems/22nd IEEE International
Parallel & Distributed Processing Symposium, 2008. © IEEE 6

tolerance. In Proc. 29th Annual International
Symposium on Fault Tolerant Computing (FTCS), pp.
15–18, Madison, Wisconsin, June 1999.

[21] M. Garzia. Assessing the Reliability of Windows
Servers. Proc. DSN 2003.

[22] J. Gray. Why do computers stop and what can be done
about it? In Proc. 5th Symp. Reliability in Distributed
Systems, 1986, pp. 3–12.

[23] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi.
Analysis of software aging in a web server. IEEE
Transactions on Reliability, vol. 55, no. 3, Sept. 2006,
pp. 411–420.

[24] M. Grottke, A. Nikora, and K. S. Trivedi. Preliminary
results from the NASA/JPL investigation, Classifying
Software Faults to Improve Fault Detection
Effectiveness. Dec. 2007.

[25] M. Grottke and K. S. Trivedi. Software faults, software
aging and software rejuvenation. Journal of the
Reliability Engineering Association of Japan, vol. 27,
no. 7, pp. 425-438, Oct. 2005.

[26] M. Grottke and K. S. Trivedi. Fighting bugs: remove,
retry, replicate and rejuvenate. IEEE Computer, vol. 40,
no. 2, pp. 107–109, Feb. 2007.

[27] M. Grottke and K. S. Trivedi. Analysis of the escalated
levels of failure recovery approach. Working paper,
University of Erlangen-Nuremberg, 2008.

[28] M. Haberkorn and K. Trivedi. Availability monitor for
a software based system. In Proc. HASE 2007, Dallas,
TX.

[29] J. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,
Feedback Control of Computer Systems, John Wiley &
Sons, 2004.

[30] G. Hoffman, M. Malek, and K. S. Trivedi. A best
practice guide to resource forecasting for the Apache
webserver. In Proc. Pacific Rim Dependability
Conference (PRDC), Riverside, CA, December 2006.

[31] G. J. Holzmann. Conquering complexity. IEEE
Computer, Dec 2007.

[32] Y. Hong, D. Chen, L. Li and K. Trivedi. Closed loop
design for software rejuvenation. In Proc. Workshop on
Self-Healing, Adaptive and Self-Managed Systems.
New York, NY. 2002.

[33] M-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault Injection
Techniques and Tools. IEEE Computer, April 1997.

[34] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Soft-
ware rejuvenation: analysis, module and applications.
In Proc. Twenty-Fifth International Symposium on
Fault-Tolerant Computing, 1995, pp. 381–390.

[35] S. W. Hunter and W. E. Smith. Availability modeling
and analysis of a two node cluster. In Proc. 5th Int.
Conf. on Information Systems, Analysis and Synthesis,
Orlando, FL, Oct. 1999.

[36] M. Kaaniche, K. Kanoun, and M. Martinello. A user-
perceived availability evaluation of a web based travel
agency. In Proc. Intl. Conf. on Dependable Systems and
Networks (DSN), 2003.

[37] K. Kourai and S. Chiba. A fast rejuvenation technique
for server consolidation with virtual machines. In Proc.
International Conference on Dependable Systems and
Networks 2007, pp. 245-255.

[38] K. Kourai. Personal communication. January 9, 2008.

[39] M. Lanus, Liang Yin, and K. Trivedi. Hierarchical
composition and aggregation of state-based availability
and performability models. IEEE Transactions on
Reliability, Mar. 2003.

[40] I. Lee and R.K. Iyer. Software Dependability in the
Tandem GUARDIAN System. IEEE Trans. Software
Engineering, May 1995, pp. 455–467.

[41] C. Lindemann. Performance Modelling with Deter-
ministic and Stochastic Petri Nets. John Wiley and
Sons, 1998.

[42] Y. Liu, Y. Ma, J. Han, H. Levendel, and K. S. Trivedi.
A proactive approach towards always-on availability in
broadband cable networks. Computer Communications,
28(1):51-64, Jan 2005.

[43] V. Mainkar and K. S. Trivedi. Sufficient conditions for
existence of a fixed point in stochastic reward net-based
iterative methods. IEEE Transactions on Software
Engineering, vol. 22, no. 9, pp. 640–653, 1996.

[44] E. Marshall. Fatal error: how Patriot overlooked a Scud.
Science, Vol. 255, p. 1347, 1992.

[45] R. Matias Jr. and P. J. Freitas Filho. Software aging
characterization based on a DOE approach. In Proc 1st
Experimental Software Engineering Latin American
Workshop, Brazil, 2004.

[46] R. Matias Jr. and P. J. Freitas Filho. An experimental
study on software aging and rejuvenation in web
servers. In Proc. 30th IEEE Annual International
Computer Software and Applications Conference, vol.
1, pp. 189-196, 2006.

[47] W. Q. Meeker and L. A. Escobar. Statistical Methods
for Reliability Data. John Wiley & Sons, New York,
1998.

[48] V. B. Mendiratta. Reliability analysis of clustered
computing systems. In Proc. Ninth International
Symposium on Software Reliability Engineering, pp.
268–272, 1999.

[49] V. B. Mendiratta, J. M. Souza, and G. Zimmerman.
Using software failure data for availability evaluation.
Designer and Developer Forum, GLOBECOM 2007,
November 27, 2007, Washington, D.C.

[50] K. Mishra and K. S. Trivedi. Model based approach for
autonomic availability management. In Proc. Int.
Symposium on Service Availability, ISAS, Helsinki,
Finland, May 2006.

In Proc. 13th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems/22nd IEEE International
Parallel & Distributed Processing Symposium, 2008. © IEEE 7

[51] D. C. Montgomery. Design and Analysis of Experi-
ments. 6th edition, John Wiley & Sons, 2004.

[52] P. Narasimhan, T. Dumitras¸, S. Pertet, C. F. Reverte, J.
Slember, and D. Srivastava. MEAD: support for real-
time fault tolerant CORBA. Concurrency and
Computation: Practice and Experience, vol. 17, no. 12,
pp. 1527-1545, 2005.

[53] W. Nelson, Applied Life Data Analysis. John Wiley and
Sons, New York, 1982.

[54] D. Nicol, W. Sanders, and K. S. Trivedi. Model-based
evaluation: from dependability to security. IEEE
Transactions on Dependable and Secure Computing,
Vol. 1, 2004.

[55] S. Pertet and P. Narasimhan. Proactive recovery in
distributed CORBA applications. In Proc. DSN, pp.
357-366, 2004.

[56] S. Pertet and P. Narasimhan. Causes of failure in web
applications. Carnegie Mellon University Parallel Data
Lab Technical Report, CMU-PDL-05-109, December
2005.

[57] E. S. Raymond, The New Hacker’s Dictionary, MIT
Press, 1991.

[58] R. A. Sahner, K. S. Trivedi, and A. Puliafito.
Performance and Reliability Analysis of Computer
Systems. Kluwer Academic Press, 1996.

[59] N Sato, H. Nakamura and K. S. Trivedi. Detecting
performance and reliability bottlenecks of composite
web services. In Proc. ICSOC, 2007.

[60] M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota,
and Y. Liu. Software aging and multifractality of
memory resources. In Proc. Int’l Conf. Dependable
Systems and Networks (DSN), 2003, pp. 721–730.

[61] L. Silva, H. Madeira, and J. G. Silva. Software aging
and rejuvenation in a SOAP-based server. Proc of Fifth
IEEE International Symposium on Network Computing
and Applications (NCA'06), pp. 56-65, Washington,
DC, 2006.

[62] W. Earl Smith, K. S. Trivedi, L. Tomek, and J. Ackeret.
Availability analysis of multi-component blade server
systems. IBM Systems Journal, to appear, 2008.

[63] A. Tai, S. Chau, L. Alkalaj, and H. Hect. On-board
preventive maintenance: a design-oriented analytic
study for long-life applications. Performance
Evaluation, vol. 35, nos. 3-4, pp. 215-232, May 1999.

[64] P. Tobias and D. Trindade. Applied Reliability, 2nd
edition. Kluwer Academic Publishers, Boston, 1995.

[65] L. Tomek and K. S. Trivedi. Fixed-point iteration in
availability modeling. Informatik-Fachberichte, Vol.
283; Fehlertolerierende Rechensysteme, M.Dal Cin,
editor, pp 229-240, Springer-Verlag, Berlin, 1991.

[66] K. S. Trivedi. Availability analysis of Cisco GSR
12000 and Juniper M20/M40. Cisco Technical Report,
2000.

[67] K. S. Trivedi. Probability & Statistics with Reliability,
Queueing and Computer Science Applications, Second
Edition, John Wiley, New York, 2001.

[68] K. S. Trivedi, R. Vasireddy, D. Trindade, S. Nathan,
and R. Castro. Modeling high availability systems. In
Proc. Pacific Rim Dependability Conference, 2006.

[69] K. S. Trivedi, D. Wang, J. Hunt, A. Rindos, M.
Peyravian, and B. Pulito. IBM SIP/SLEE cluster
reliability model. Internal document, IBM RTP, 2007,
also Globecom 2007, D&D Forum, Washington DC.

[70] K. Vaidyanathan, R. E. Harper, S.W. Hunter, and K. S.
Trivedi. Analysis and implementation of software
rejuvenation in cluster systems. In Proc. ACM
SIGMETRICS, 2001.

[71] K. Vaidyanathan and K. S. Trivedi. A comprehensive
model for software rejuvenation. IEEE Transactions on
Dependable and Secure Computing, vol. 2, no. 2, pp.
124–137, 2005.

[72] S. A. Vilkomir, D. L. Parnas, V. B. Mendiratta, and E.
Murphy. Availability evaluation of hardware/software
systems with several recovery procedures. In Proc.
Twenty-Ninth Annual International Computer Software
and Applications Conference, pp. 473–478, 2005.

[73] D. Wang, R. Fricks, and K. S. Trivedi. Dealing with
non-exponential distributions in dependability models.
Performance Evaluation - Stories and Perspectives, G.
Kotsis, editor, Österreichische Computer Gesellschaft,
pp. 273-302, 2003.

[74] D. Wang and K. S. Trivedi. Modeling user-perceived
service availability. In Proc. of the 2nd International
Service Availability Symposium (ISAS), Berlin, April
2005.

[75] D. Wang, W. Xie, and K. S. Trivedi. Performability
analysis of clustered systems with rejuvenation under
varying workload. Performance Evaluation, vol. 64, no.
3, pp. 247-265, 2007.

[76] M. Winslett. Bruce Lindsay speaks out. ACM SIGMOD
Record, June 2005, pp. 71-79.

[77] W. Xie, Y. Hong and K. S. Trivedi. Analysis of a two-
level software rejuvenation policy. Reliability
Engineering and System Safety. vol. 87, no. 1, pp. 13-
22, Jan. 2005.

[78] L. Yin, M. Smith, and K. S. Trivedi. Uncertainty
analysis in reliability modeling. In Proc. Annual
Reliability, Availability and Maintainability Symposium
(RAMS), Philadelphia, PA, 2001.

	1. Overview
	2. Quantified Availability Assurance
	3. Recovery from failures caused by Mandelbugs
	4. Proactive recovery and aging-related bugs
	5. Conclusions
	References

