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Abstract 

As space mission software becomes more complex, 
the ability to effectively deal with faults is increasingly 
important. The strategies that can be employed for 
fighting a software bug depend on its fault type. Bohr-
bugs are easily isolated and removed during software 
testing. Mandelbugs appear to behave chaotically. 
While it is more difficult to detect these faults during 
testing, it may not be necessary to correct them; a sim-
ple retry after a failure occurrence may work. Aging-
related bugs, a sub-class of Mandelbugs, can cause an 
increasing failure rate. For these faults, proactive 
techniques may prevent future failures. 

In this paper, we analyze the faults discovered in the 
on-board software for 18 JPL/NASA space missions. 
We present the proportions of the various fault types 
and study how they have evolved over time. Moreover, 
we examine whether or not the fault type and attributes 
such as the failure effect are independent. 

1. Introduction 

Experience has shown that all but the simplest soft-
ware systems contain faults (often called bugs, or de-
fects). For describing characteristics of software faults 
that cause failures during testing and operation, practi-
tioners and researchers sometimes refer to “Bohrbugs,” 
“Heisenbugs,” “Mandelbugs,” and “aging-related 
bugs.” However, there are no consistent definitions for 
most of these terms, and often the terms are used with-
out any explicit definition. In recent research [10], 
[11], [12], we have therefore tried to define the terms 
as precisely as possible. Throughout this paper we use 
the following definitions: 

 

• Bohrbug := An easily isolated fault that manifests 
consistently under a well-defined set of conditions, 
because its activation and error propagation lack 
“complexity” as defined below.  

 

• Mandelbug := A fault whose activation and/or error 
propagation are complex. "Complexity" can be 
caused by 
1. a time lag between the fault activation and the 

occurrence of a failure; or 
2. the influence of indirect factors, i.e., 

a) interactions of the software application with 
its system-internal environment (hardware, 
operating system, other applications); or 

b) influence of the timing of inputs and opera-
tions (relative to each other, or in terms of 
the system runtime or calendar time); or  

c) influence of the sequencing of operations; 
sequencing is considered influential, if the 
inputs could have been run in a different or-
der and if at least one of the other orders 
would not have led to a failure. 

Typically, a Mandelbug is difficult to isolate, 
and/or the failures it causes are not systematically 
reproducible. Mandelbug is the complementary an-
tonym of Bohrbug; i.e., each fault is either a Man-
delbug, or a Bohrbug. 
 

• Aging-related bug := A fault that is capable of 
causing an increasing failure rate and/or degraded 
performance. There are two possible reasons for 
this phenomenon: 
1. The fault causes the accumulation of internal er-

ror states. 
2. The activation and/or error propagation of the 

fault is influenced by the total time the system 
has been running.  

Aging-related bugs are a sub-type of Mandelbugs. 
 

According to the relationships between the fault types, 
each fault is a Bohrbug (BOH), a non-aging-related 
Mandelbug (NAM), or an aging-related bug (ARB). 

As we define them, Bohrbugs basically correspond 
to solid [6] or hard [2] faults, while Mandelbugs are 
soft [6] or elusive [2] faults, which Gray [6] also refers 
to as Heisenbugs. However, there are subtle differ-
ences. Our definitions do not classify a fault according 
to its behavior in one specific case (like the failure oc-
currence that led to the detection of the fault). Rather, 
we focus on the potential manifestation characteristics. 
A fault is categorized as a Mandelbug if it is capable of 
causing failures that are not systematically reproduci-
ble. Likewise, a fault that is able to cause an increasing 
failure rate is an aging-related bug even if it is detected 
during code inspection and has never had the “chance” 
to actually make a software system age. Our fault clas-
sification is thus related to inherent properties of the 
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software fault. The distinction between potential and 
actual fault behavior is similar to the distinction be-
tween trigger and symptom in Orthogonal Defect Clas-
sification [4]. 

In [10], we showed that Lindsay invented the term 
Heisenbug in the 1960s to refer to faults that stop caus-
ing a failure or that manifest differently when one at-
tempts to probe or isolate them. Programmers also use 
this term in the same manner [19]. Unlike Gray [6], we 
therefore do not equate Heisenbugs with soft faults. 

Despite these theoretical refinements, classifying 
software faults into Bohrbugs and Mandelbugs will 
usually not lead to a grossly different result than cate-
gorizing them into hard and elusive faults. 

Fault classification is of practical interest, because 
the likelihood of being able to detect and remove the 
faults during development and testing, as well as the 
possible strategies for dealing with residual faults dur-
ing mission operations depend on the fault type. Bohr-
bugs are the easiest to find during testing. Fault-
tolerance for an operational system in the presence of 
Bohrbugs can mainly be achieved with design diver-
sity, since they deterministically cause failures. Due to 
their complex behavior, Mandelbugs are more difficult 
to find, isolate, and correct during testing. Since the re-
execution of an operation that failed because of a Man-
delbug will often not result in another failure, Mandel-
bugs can be handled with software replication or – if 
failure occurrences can be tolerated – with simple re-
tries or more sophisticated approaches like check-
pointing and recovery-oriented computing [3]. More 
specifically, for aging-related bugs, for which the ten-
dency of causing a failure increases with the system 
run-time, proactive measures that clean the internal 
system state and thus reduce the failure rate are useful. 
This kind of “preventive maintenance” is referred to as 
“software rejuvenation” [15]. 

It is generally assumed that due to the complex be-
havior of Mandelbugs (including aging-related bugs) 
the majority of software faults remaining after thor-
ough testing belong to this class. Most of the authors 
making this claim support it by referring to a small 
collection of empirical studies [1], [6], [16]. However, 
the evidence contained in these studies is much less 
conclusive than asserted. For example, Gray and 
Siewiorek [7] state with respect to Adams' study of 
maintenance records of North American IBM systems 
[1]: “Some software faults were reported many times, 
but such virulent bugs made up significantly less than 1 
percent of all reports.” While Adams indeed observed 
that many faults merely affected few users, this does 
not necessarily mean that these faults were Mandel-
bugs. Rather, it is possible that a large percentage of 
these faults were Bohrbugs located in parts of the soft-
ware executed only by users with an unusual opera-

tional profile. (Conversely, some of the faults reported 
by many users may have been Mandelbugs.) The evi-
dence concerning the percentage of Bohrbugs and 
Mandelbugs in software systems presented in other 
studies is similarly inconclusive.  

In an ongoing project, we are therefore classifying 
software faults from current as well as historical JPL 
missions to gain a better understanding of the propor-
tions of the different types of faults in flight software 
and ground software. Establishing a baseline will en-
able JPL to develop techniques and guidelines for 
(i) improving the detectability of software faults, 
(ii) masking the effects of faults, and (iii) identifying 
components most likely to contain difficult-to-detect 
critical software faults. 

In this paper, we present our analysis of the faults 
discovered in the flight software for 18 space missions. 
We specifically examine: 

 

• the relationships between fault type and further 
characteristics, like failure effect, and failure risk; 

• differences in the fault type proportions across mis-
sions; and 

• the development of the fault type proportions 
within a mission, as the mission duration increases. 

 

The paper is organized as follows: Section 2 reviews 
related work in analyzing software faults across multi-
ple projects. In Section 3, we describe our approach to 
classifying faults, before presenting our analysis of 
fault data in Section 4. The results are discussed in the 
light of other ongoing research in Section 5. Section 6 
concludes the paper. 

2. Related work 

JPL collects information about incidents of unex-
pected behavior of space systems in an institutional 
anomaly reporting system. While many of the anoma-
lies represent system failures (i.e., incorrect system 
behavior), some of them are based on misunderstand-
ings of how the system is supposed to work. Potential 
causes for observed space system failures include pro-
cedural errors, faults in the hardware or software of the 
ground system, as well as faults in the hardware or the 
software of the flight system. 

Studies of space system anomalies [8], [9], [13] have 
previously been conducted at JPL as part of the Ultra-
reliability (UR) Program, sponsored by the NASA Of-
fice of Safety and Mission Assurance (OSMA). 
Knowledge gained from these studies includes a better 
understanding of the relative proportions of different 
categories of anomalies (e.g., operator misunderstand-
ings vs. failures due to hardware faults vs. failures due 
to software faults), the times at which anomalies are 
more likely to be observed during mission operations, 
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and the types of corrective action most frequently 
taken in response to observed anomalies. For example, 
Green et al. [8] and Hoffman et al. [13] analyzed in-
flight anomalies reported for the Voyager and Galileo 
missions. Their findings included the result that at least 
for Galileo, software was a significant generator of 
failures; flight and ground software together were re-
sponsible for somewhat over 40% of the in-flight 
anomalies recorded in the JPL Problem Reporting Sys-
tem. In [9], Green et al. analyzed in-flight anomalies 
reported for seven current and historic Mars explora-
tion missions. Since recent missions to Mars have in-
cluded both orbiter and lander spacecraft, and since 
several missions were not successful upon reaching 
Mars, the time period for comparing the missions was 
limited to the span covering the launch of each space-
craft to its arrival at Mars. Their results indicated that 
for the missions analyzed, software was a significant 
source of anomalous behavior, as for the Galileo mis-
sion; the proportion of anomalies due to flight and 
ground software combined ranged from just under 1/2 
to nearly 2/3, with later missions having a higher pro-
portion of anomalies being due to software. However, 
Green et al. did not go into further detail regarding 
different types of software faults. 

3. Approach 

This paper focuses on 18 historic and ongoing 
JPL/NASA missions. Seven of these missions were 
related to earth orbiters, while eleven others were 
planetary missions, for which the destination was one 
or more astronomical bodies beyond the Earth-Moon 
system. The destination for seven of these planetary 
missions was Mars, one was an Outer Planets mission, 
two were targeted to comets, and one returned samples 
of the Solar wind.  

For these missions, over 13,000 anomaly reports re-
corded after deployment of the respective space system 
from the developing facility were collected from JPL’s 
institutional Problem Reporting System. Based on the 
value of the multiple-choice “Cause” field in the 
anomaly reports, 653 of them were identified as having 
been related to the flight software of our 18 missions. 
We further analyzed each of these anomalies by the 
simple but laborious process of reading the textual de-
scriptions of the anomaly, its analysis and verification, 
and the corrective action taken. 76 anomalies turned 
out not to be failures caused by flight software faults, 
but had causes such as operator mistakes or incorrect 
operating procedures; another 57 anomalies were iden-
tified as being related to software faults that had al-
ready been responsible for previously reported failures. 
By excluding these 133 anomalies we derived at a set 
of 520 anomalies, each of which represents a unique 

fault in the flight software of one of the 18 missions. 
Note that there are anomalies (especially those which 
cannot be reproduced) for which the cause is not fully 
understood. Such an anomaly was categorized as a 
duplicate and removed from the following analysis if 
the similarity of its description with an earlier anomaly 
suggested that both had been caused by the same fault.  

Following the scheme presented in Section 1, we 
categorized these software faults into Bohrbugs, non-
aging-related Mandelbugs, and aging-related bugs. We 
based our decisions on the textual descriptions in the 
anomaly reports, as well as discussions with appropri-
ate development personnel in cases for which a classi-
fication could not initially be made. For those faults for 
which it was not possible to obtain sufficient informa-
tion for determining the classification, we introduced 
the additional fault type “unknown” (UNK). 

4. Analysis 

4.1. Joint analysis of all software faults 

Of the 520 software faults identified for all 18 mis-
sions, we classified 319 as Bohrbugs, 167 as non-
aging-related Mandelbugs and 23 as aging-related 
bugs. For 11 faults the type could not be determined; 
these faults were therefore assigned the fault type “un-
known”. The corresponding proportions of the fault 
types BOH, NAM, ARB and UNK are thus 0.614, 
0.321, 0.044 and 0.021, respectively. 

As pointed out above, our fault type definitions fo-
cus on the potential manifestation characteristics of 
faults, not on the fault behavior with respect to one 
specific failure occurrence. The reasoning behind this 
decision was that the fault type should depend on in-
herent fault characteristics. If, for example, a fault was 
considered a Mandelbug if a specific failure it caused 
cannot be reproduced, then the classification would 
highly depend on the knowledge of the specific user or 
tester who encountered this failure. The analysis of 
faults in JPL/NASA flight software has confirmed our 
approach: Since many system parameters are con-
stantly logged, JPL/NASA engineers are able to even-
tually reproduce a large percentage of failures that 
would be difficult to reproduce in “normal” industrial 
settings. Despite this fact, based on our definitions the 
underlying faults are always categorized as Mandel-
bugs if any of the criteria of “complexity” applies to 
the fault activation or the error propagation mechanism 
– whether or not the related failure can be reproduced.  

We also mentioned that aging-related bugs are faults 
that can potentially cause software aging, i.e., an in-
creasing failure rate and/or performance degradation. 
Even if such a fault should be detected (for example, 
during a code inspection) before it has had the chance 
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to actually lead to a decreasing performance, its fault 
type remains unchanged. However, in this case the fact 
that the fault could have caused aging may go unno-
ticed. Therefore, the percentage of faults categorized as 
aging-related bugs based on fault descriptions and 
anomaly reports tends to be a lower bound for the true 
fraction of faults that are aging-related bugs. 

Based on the software faults for all 18 missions, we 
investigated whether there are any dependencies be-
tween the fault type and three other criteria according 
to which anomalies are classified in JPL’s Problem 
Reporting System: the “criticality,” the “failure effect,” 
and the “failure risk.” 

The variable “criticality” distinguishes between ano-
malies with “unacceptable risk”, “accepted risk”, “no 
significant risk”, and “no risk”. To test the null hy-
pothesis “fault type and criticality are independent” 
against the alternative hypothesis that they do depend, 
we employed a chi-square independence test. This test 
compares the contingency table, containing the abso-
lute number of joint observations of each failure type 
and each criticality, with the independence table, con-
sisting of the expected number of joint observations if 
the two variables were indeed independent. To evalu-
ate the disagreement between the two tables, for each 
combination of fault type and criticality category the 
squared deviation between the observed and the ex-
pected absolute frequency is computed and divided by 
the expectation. The value of the test statistic is the 
sum of all of these normalized squared deviations. It 
holds true in general that under the null hypothesis of 
independence the test statistic follows a chi-square 
distribution with (i–1)(j–1) degrees of freedom, where i 
and j represent the number of categories for the first 
and the second variable, respectively [17], pp. 447–
449. In our example, the value of the test statistic 
amounts to 6.41. Since the corresponding p-value is 
0.379, the hypothesis that fault type and criticality are 
independent cannot be rejected at any reasonable error 
level, like 5% or 1%. This means that our data do not 
contain any evidence for an association between the 
type of a fault and its criticality. 

In JPL’s Problem Reporting System, “failure effect” 
assesses the effect of the problem/failure as if it had 
occurred in flight without the benefit of corrective ac-
tion or redundancy. The ratings are “negligible effect”, 
“significant effect”, and “major or catastrophic effect”. 
Comparing the contingency table with the independ-
ence table (both not shown in this paper) indicates that 
Bohrbugs with “negligible” failure effects are slightly 
underrepresented, while those with “major or catastro-
phic” failure effects are overrepresented; the opposite 
seems to be true for non-aging-related Mandelbugs. 
However, the decision of testing the null hypothesis 
“fault type and failure effect are independent” versus 

the alternative that fault type and failure effect are in-
deed associated depends on the error level (i.e., the 
probability for wrongfully rejecting the null hypothesis 
if it is true) that we are willing to accept: The value of 
the chi-square statistic is 9.58, which corresponds to a 
p-value of 0.048. While the independence hypothesis 
could be rejected at an error level of 5%, this is not the 
case at an error level of 1%. There is thus some indica-
tion that fault type and failure effect might be linked. 

”Failure risk” is an assessment of the certainty that 
the exact failure cause has been determined and that 
the corrective action will eliminate any known possi-
bility of recurrence of the problem in flight. The rat-
ings are “known cause/certainty in corrective action”, 
“unknown cause/certainty in corrective action”, 
“known cause/uncertainty in corrective action”, and 
“unknown cause/uncertainty in corrective action”. In 
our data, failures caused by Bohrbugs for which the 
cause is known and the corrective action is certain are 
clearly overrepresented; likewise, among failures 
caused by non-aging-related Mandelbugs, those for 
which either the cause is unknown or the corrective 
action is uncertain are highly overrepresented. The 
statistical significance of this relationship can be 
shown via a chi-square independence test of the null 
hypothesis “fault type and failure risk are independent” 
against the alternative hypothesis that they are linked. 
The value of the chi-square statistic obtained is 64.03, 
implying a p-value of 6.8e-12. The null hypothesis can 
thus be rejected at any common error level. While this 
result might have been expected due to the fault type 
definitions, it is surprising that the dependence is that 
significant: As pointed out earlier, JPL/NASA engi-
neers are often able to reproduce failure caused by 
Mandelbugs due to the wealth of system parameters 
recorded. Although the logged information should also 
help them to identify the causes of such failures, this 
does not seem to be the case in general. 
 

4.2. Fault type proportions vs. launch order 

While space missions vary in their duration, system 
size, and fault density of the software, the fault type 
proportions might be similar across missions. We in-
vestigate this conjecture in this section. 44 of the 
unique faults extracted from JPL’s Problem Reporting 
System were discovered after deployment of the space 
system from the developing facility, but before launch. 
Since the types of faults causing failures during normal 
operation could differ from the kinds of faults discov-
ered in earlier phases, we drop these 44 faults for the 
following analyses, focusing on the unique faults de-
tected after launch.  

Moreover, for 10 of the 18 missions considered so 
far the number of unique software faults discovered is 
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very small: The combined number of unique faults 
detected for these 10 missions amounts to 39, averag-
ing to a mere 3.9 faults per mission. Clearly, for these 
missions the fault type proportions are unlikely to have 
stabilized. Our examination of fault type proportions 
within missions is therefore based on the remaining 
eight missions. These missions are summarized in Ta-
ble I. The smallest number of unique faults available 
for any of these missions is 23; the total number of 
unique faults that our analysis is based on is 437. 

For each mission the first column provides a unique 
numerical identifier corresponding to launch order; i.e., 
mission ID 1 was the first mission launched. The sec-
ond column represents the operational mission duration 
covered in our data. For historic missions, this duration 
is the period between launch and the end-of-mission; 
for current missions, it is the period between launch 
and the date on which the information was gathered 
from JPL’s Problem Reporting System. Showing the 
durations in days would provide clues helping to iden-
tify the missions. In order to maintain mission anonym-
ity, all durations have therefore been normalized in 
terms of the duration of the longest-running mission 
(mission ID 1). Of course this normalization does not 
change the relative length of missions: For example, a 
mission that lasted half as many days as mission ID 1 
would be assigned a duration of 0.5. The remaining 
four columns represent the proportions of Bohrbugs, 
non-aging-related Mandelbugs, aging-related bugs, and 
faults of unknown type detected in the flight software 
of the respective mission after launch.  

The last two rows of Table I list the (unweighted) 
average fault type proportions, as well as the standard 
deviations of the individual fault type proportions ob-
served. Parts of the variation might be explained by the 
time at which the space systems were developed, 
launched and operated. Figure 1, in which the missions 
are arranged in launch order, shows how the fault type 
proportions changed across missions. 

 

Table I. Mission IDs, normalized durations and fault type 
proportions for the eight missions with the largest num-

ber of unique faults 

Obviously, for three of the four most recent missions 
(IDs 5, 7, and 8) the proportion of Bohrbugs is larger 
than for any of the first four missions. Besides the cor-
responding decrease in the proportion of all Mandel-
bugs, we can also see that especially the proportion of 
aging-related bugs seems to be lower for the later mis-
sions. These findings could suggest the following con-
clusions, which are not mutually exclusive: 

 

• In more recent development projects, the propor-
tion of residual software faults that are Bohrbugs is 
larger than for earlier missions. There are two pos-
sible explanations: 
o The development process for recent missions 

has changed so that a higher proportion of the 
faults created are Bohrbugs. 

o Alternatively, for more recent missions, fault 
detection and removal techniques have become 
more effective at reducing the number of Man-
delbugs remaining in the system at launch time. 

• For the more recent space missions, the operational 
environment is better controlled. Non-aging-related 
Mandelbugs and aging-related bugs for which a 
failure occurrence requires specific and unusual en-
vironmental conditions are now underrepresented 
among the detected faults. 

 

One might also think that the more recent missions 
(but not the older ones) employ techniques like soft-
ware replication or software rejuvenation, masking 
existing non-aging-related Mandelbugs and aging-
related bugs. However, within the missions analyzed 
there appear to be no significant differences in the 
fault-tolerance strategies used. Such masking effects 
are thus unlikely to be the cause of our findings.  

 

Figure 1. Fault type proportions for the eight missions 
with the largest number of unique faults 

 

ID 
Normalized 

duration 
Fault type proportions 

BOH NAM ARB UNK 
1 1.000 0.595 0.270 0.135 0.000 
2 0.911 0.571 0.379 0.043 0.007 
3 0.657 0.481 0.481 0.000 0.037 
4 0.582 0.554 0.369 0.062 0.015 
5 0.292 0.810 0.143 0.048 0.000 
6 0.376 0.522 0.435 0.000 0.043 
7 0.226 0.815 0.130 0.019 0.037 
8 0.171 0.643 0.343 0.014 0.000 

Avg. proportions 0.635 0.307 0.038 0.020 
Standard deviations 0.114 0.112 0.042 0.017 
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There is yet another possibility: The findings might 
be an artifact of the analysis. As they were launched 
later, the duration covered by the data tends to be 
shorter for the more recent missions as opposed to the 
earlier missions, some of which are still ongoing. Since 
one may conjecture that the proportion of failures 
caused by aging-related bugs increases with mission 
duration (after all, it is the nature of these faults to 
manifest themselves at a higher rate after longer peri-
ods of continuous operation), the observed differences 
in the fault type proportions could simply be driven by 
the different mission runtimes.  

 
4.3. Fault type proportions vs. mission run-

times 

To investigate the conjecture formulated at the end 
of the last section, we now study how the fault type 
proportions evolve within missions over their runtimes. 

Figure 2 compares the development of the propor-
tion of Bohrbugs for the four earlier missions. All run-
times are again normalized by the total duration of 
mission ID 1; for this mission, information on the fault 
type proportions is therefore available up to a normal-
ized runtime of 1.0 (or 100%). For each mission, the 
proportion of Bohrbugs is updated whenever a new 
fault is discovered in the flight software of that mis-
sion. For example, after a runtime in days that corre-
sponds to around 19 percent of the total duration of 
mission ID 1, the proportion of Bohrbugs for that mis-
sion drops first to 83% and a very short time later to 
71%. After the same number of days since launch, the 
proportion of Bohrbugs among the faults detected in 
the software of mission ID 3 is 39%. The number of 
days for which this mission is covered in our data is 
about 66% of the duration of mission ID 1; therefore, 
the line related to mission ID 3 breaks off at an x-
coordinate of 0.66.  

Figure 2 does not indicate that within one mission 
the proportion of Bohrbugs usually decreases mono-
tonically over the mission runtime. However, it does 
show that as a mission progresses and more and more 
faults are discovered there tends to be less and less 
fluctuation in the proportion of Bohrbugs within a mis-
sion. What is more, across missions the proportions 
seem to stabilize around almost the same value after a 
similar number of days since launch. After a mission 
runtime that corresponds to 40 percent of the duration 
of mission ID 1, for all missions the proportion of 
Bohrbugs lies in the interval (35%, 65%); after a nor-
malized runtime of 0.55, the lower bound of this inter-
val has further risen to 45%. At a normalized runtime 
of 0.75, the proportion of Bohrbugs has stabilized at a 
value around 58% for the two missions for which data 
are still available. 
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Figure 2. Proportion of Bohrbugs for missions ID 1 to 4 

 
These findings suggest that for the earlier four of our 

eight missions, the fraction of Bohrbugs among all 
faults contained in the software at launch time may 
indeed have been very similar.  

It is not surprising that this might be the case: The 
types of systems developed were similar to each other 
in terms of complexity and functionality. Although a 
significant effort was undertaken to improve software 
process maturity over the years, the development proc-
esses themselves as defined by the project software 
management plans were similar to each other, and the 
institutional standards governing software development 
did not change significantly. Moreover, many of the 
developers worked on more than one of these projects. 

The variation in the proportion of Bohrbugs among 
the detected faults across these missions (see Table I) 
could thus be explained by the differences in the mis-
sion runtimes covered by the data. To check this sur-
mise, we extract information on how the proportion of 
Bohrbugs develops over time for the earlier four pro-
jects in the form of 95% confidence intervals; these 
intervals can then be compared with the available data 
for the four later missions, to study whether or not they 
are substantially different from the earlier ones.  

For each of 100 evenly-spaced normalized mission 
runtimes ti (i = 1, …, 100) between zero and one, we 
collect Bi, the set of current Bohrbug proportions for 
those missions (among missions ID 1 to 4) whose nor-
malized duration is greater than or equal to ti. We de-
note the cardinality of the set Bi by ki. (For example, 
for the normalized runtime ti = 0.4, observations are 
still available for all ki = 4 missions, with the current 
set of Bohrbug proportions Bi = {0.417, 0.455, 0.576, 
0.605}; after a normalized runtime of ti = 0.6, only 
ki = 3 missions provide information about the current 
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proportion of Bohrbugs, and Bi = {0.440, 0.458, 
0.595}.) The bounds of a 95% confidence interval for 
the proportion of Bohrbugs at ti can only be determined 
if ki is larger than one. To this end, a bootstrapping-
type algorithm is then employed.  

Bootstrapping is a data-based simulation approach 
accounting for the fact that in inferential statistics the k 
observations available are a random sample from a 
(possibly infinite) sample space [5]. To evaluate vari-
ability, bootstrapping produces many samples of size k, 
each time drawing from the k observations without 
replacement, and calculates the statistics of interest 
(e.g., the sample mean) for all of these samples. 

Since the number of observations in Bi is always 
small, our bootstrapping-type algorithm does not have 
to rely on sampling. Instead, it directly creates all pos-
sible combinations of ki values chosen from Bi with 
replacement. Then a distribution is fitted to each of 

these ni = ik
ik  combinations Cij (j = 1, …, ni): 

 

• If all values in Cij are identical, then the fitted dis-
tribution is a singular distribution at this value.  

• Otherwise, a beta distribution is fitted to the values 
in Cij. Due to its flexible shape and the fact that its 
domain is restricted to the interval from zero and 
one, the beta distribution is often used to model 
fractions. However, since the end-points of the in-
terval are not included in the domain, values of zero 
and one contained in Cij (which may especially be 
observed for short mission runtimes) are replaced 
by values slightly larger than zero and less than 
one, respectively.  

 

To derive the 95% confidence interval for the Bohrbug 
proportion at normalized mission runtime ti, we then 
sample 2000 values from the mixed distribution in 
which each of the ni fitted distributions is given weight 
1/ni. The lower (upper) bound of the confidence inter-
val is the lower (upper) empirical 2.5% quantile of the 
2000 values sampled. 

We implemented this bootstrapping-type approach 
for analyzing the data in the programming language 
provided by the statistics software R [18]. Figure 3 and 
Figure 4 show the 95% confidence interval for the pro-
portion of Bohrbugs as dotted lines. The growing stabi-
lization with mission runtime – already observed in 
Figure 2 – is reflected in the decreasing width of the 
confidence interval (i.e., the difference between its 
upper and lower bounds tends to get smaller). For 
normalized runtimes larger than 0.582, parts of this 
decline can be attributed to the fact that the calcula-
tions are based on a smaller number of missions. How-
ever, even for shorter mission runtimes the reduction in 
variability is clearly noticeable.  
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Figure 3. Proportion of Bohrbugs for missions ID 5 and 6, 
and 95% confidence interval based on missions ID 1 to 4 

 
Figure 3 and Figure 4 also compare the confidence 

interval established for the four earlier missions with 
the development of the Bohrbug proportions for the 
four later ones. Table I and Figure 1 showed that for 
three of the later missions the Bohrbug proportion is 
higher than for the earlier missions. We now see from 
Figure 3 and Figure 4 that for mission ID 8 the differ-
ence in the Bohrbug proportion could be explained by 
the fact that at short mission runtimes the fault type 
proportions have not yet stabilized as much as after 
longer runtimes. However, for missions ID 5 and 7 
several observations lie outside the 95% confidence 
interval, suggesting that there may indeed be a differ-
ence between the first four and these later missions.  
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Figure 4. Proportion of Bohrbugs for missions ID 7 and 8, 
and 95% confidence interval based on missions ID 1 to 4 
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Figure 5. Proportion of non-aging-related Mandelbugs for 

missions ID 1 to 4 

 
Since each software fault is either a Bohrbug or a 

Mandelbug, the results presented for Bohrbugs analo-
gously apply to the category of all Mandelbugs. Spe-
cifically, the evidence suggests that the fraction of ini-
tial faults that are Mandelbugs may be smaller for mis-
sions ID 5 and 7 than for the first four missions ana-
lyzed.  

However, this does not necessarily mean that these 
findings also apply to the two sub-types of Mandel-
bugs. The same analyses were therefore also carried 
out for the proportions of non-aging-related Mandel-
bugs. The results are shown in Figure 5 to Figure 7.  
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Figure 6. Proportion of non-aging-related Mandelbugs for 
missions ID 5 and 6, and 95% confidence interval based 

on missions ID 1 to 4 
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Figure 7. Proportion of non-aging-related Mandelbugs for 
missions ID 7 and 8, and 95% confidence interval based 

on missions ID 1 to 4 
 
The data depicted in Figure 5 indicate that for the 

four earlier missions the variability in the proportion of 
non-aging-related Mandelbugs tends to get less with 
increasing mission duration, although it is not clear 
whether the proportions will in the end settle to very 
similar values. Corresponding with this behavior is 
again a decreasing trend in the widths of the 95% con-
fidence interval derived with the bootstrapping-type 
algorithm, as can be seen in Figure 6 and Figure 7.  

Again, it is missions ID 5 and 7 for which some of 
the proportions of non-aging-related Mandelbugs lie 
outside the 95% confidence interval derived for the 
earlier missions. This could mean that for these mis-
sions the fraction of non-aging-related Mandelbugs 
among all initial software faults is lower than for the 
first four missions.  

Of course, different initial fault type proportions are 
not the only possible explanation for the higher (lower) 
proportions of Bohrbugs (non-aging-related Mandel-
bugs) observed for missions ID 5 and 7. Instead, these 
initial proportions could be similar, but the stabiliza-
tion might occur later than for the earlier missions. 
This might for example happen if the intended mission 
duration is longer for the later missions, because non-
aging-related Mandelbugs can be expected to show 
themselves at a higher rate once operational constraints 
are relaxed after a mission’s primary goals have been 
achieved. 

We finally analyzed the proportions of aging-related 
bugs; however, additional figures are omitted due to 
space constraints. The proportions of aging-related 
bugs initially observed during the four earlier missions 
showed less overall variability than the proportions of 
the other fault types. Moreover, the proportions stabi-
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lize to a lesser extent as mission runtime increases; no 
clear trend is discernible for the widths of the 95% 
confidence intervals determined with the bootstrap-
ping-type algorithm. Comparing the proportions of 
aging-related bugs for the four later missions with the 
95% confidence intervals based on the four earlier mis-
sions, we could not find any clear differences.  

5. Discussion  

We have analyzed software anomaly reports for 18 JPL 
robotic exploration space missions to study the de-
pendencies between the fault type and further charac-
teristics like failure effect, and failure risk; the propor-
tions of Bohrbugs, non-aging-related Mandelbugs, and 
aging-related bugs among all software faults detected; 
changes in these proportions in the course of a mission; 
and variations in the fault type proportions across mis-
sions. Our findings are as follows: 
 
1. Although the wealth of system parameters logged 

enables engineers at JPL/NASA to reproduce many 
of the failures caused by Mandelbugs, there is a 
highly significant relationship between the fault 
type and the failure risk: For failures due to Man-
delbugs the cause is often questionable or not un-
derstood. However, at an error level of 1%, the hy-
potheses that fault type and criticality as well as 
fault type and failure effect are independent could 
not be rejected. 

2. Among the 520 software faults detected in all 18 
missions after deployment of the space system from 
the developing facility, 61.4% were Bohrbugs, and 
36.5% were Mandelbugs; this latter number in-
cludes those 4.4% of all software faults that were 
aging-related bugs. While these proportions high-
light the importance of Mandelbugs, they also seem 
to indicate that additional testing and technical re-
view prior to deployment of the space system from 
the developing facility could further reduce the 
number of Bohrbugs found later. Detailed analyses 
of testing effort and defect repair times will be re-
quired to develop more effective strategies. 

3. The widths of the confidence intervals for the pro-
portions of Bohrbugs and non-aging-related Man-
delbugs calculated based on four early missions 
showed decreasing trends. This suggests that after 
long mission durations the proportions of Bohr-
bugs/non-aging-related Mandelbugs among the de-
tected faults are similar across missions. A possible 
explanation is that at launch time, after completion 
of the testing phase, the proportion of Bohrbugs 
among the residual flight software faults is similar 
for these four missions; the same applies to the ini-
tial proportion of non-aging-related Mandelbugs. 

4. The decreasing widths of the confidence intervals 
also imply that much of the variation in the fault 
type proportions of the four early missions seen in 
Table I can be explained by the fact that for short-
running missions with a low absolute number of 
faults detected the fault type proportions have not 
yet stabilized. This may also be the case for the 
four more recent missions analyzed, although there 
is some evidence that the flight software of earlier 
missions contained a smaller proportion of Bohr-
bugs and a higher proportion of Mandelbugs. 

 
These findings will be able to provide guidance in the 
fault detection, identification, and recovery (FDIR) 
techniques implemented in space mission systems, as 
well as guidance in the verification strategies to be 
used during development. For example, since Mandel-
bugs are difficult to detect and remove during software 
testing, the rather large proportion of Mandelbugs 
among the residual faults at launch time indicates the 
potential benefit of employing verification techniques 
such as model checking and theorem proving in addi-
tion to dynamic testing. A significant proportion of the 
Mandelbugs we found are related to the effects of in-
struction ordering in multi-threaded systems (e.g., race 
conditions, deadlocks). Techniques such as model 
checking were developed to find these types of defects; 
for instance, the SPIN model checker [14] was devel-
oped specifically to find timing-related faults in te-
lephony protocols. These faults can be very difficult to 
find by testing because (i) testers will usually not be 
able to control the order in which instructions are exe-
cuted for the system under test, and (ii) the computa-
tional state space is almost always too large to test all 
of the possible execution orderings, even if the tester 
did have sufficiently detailed control. 

Our analyses are based on those anomalies classified 
as related to flight software according to the “Cause” 
field. Recent work by Green et al. [9] as part of the UR 
Program indicates that in the JPL Problem Reporting 
System the number of software-related anomalies may 
be significantly undercounted. Green et al. analyzed in 
detail approximately 1300 anomalies of all types be-
tween launch and orbit insertion for seven Mars mis-
sions. These anomalies were categorized according to 
type (e.g., flight software, flight hardware) not by ex-
amination of the “Cause” field of the anomaly report, 
but by a detailed reading of the text describing the 
anomalous behavior, the analysis conducted to deter-
mine the cause, and the final corrective action. Because 
many of the anomaly reports that were analyzed for 
Green’s UR task form a subset of the anomaly reports 
that we analyzed, any of Green’s results that may af-
fect the validity of our work should be considered. 
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Of particular interest is the finding by Green et al. 
that the number of flight software anomalies identified 
by reading the descriptive text of the anomaly reports 
was approximately six times the number of flight soft-
ware anomalies identified by the anomaly reports’ 
“Cause” field. This indicates that the number of soft-
ware anomalies may be significantly underreported in 
the JPL Problem Reporting System.  

We studied additional anomalies that were not part 
of the original analysis to determine the effect of this 
finding on our results. From the Mars missions ana-
lyzed by Green et al. [9], we identified 62 flight soft-
ware anomalies that had been labelled as other types of 
anomaly (e.g., flight hardware, procedural) in the 
“Cause” field and classified them according to our cri-
teria. The proportions of the types BOH, NAM, ARB 
and UNK for these additional anomalies were 0.694, 
0.258, 0.016, and 0.032. By way of comparison, the 
global proportions of the fault types BOH, NAM, ARB 
and UNK reported at the beginning of Section 4.1 were 
0.614, 0.321, 0.044 and 0.021. Although for the addi-
tional anomalies the proportion of Bohrbugs was 
higher and the proportion of Mandelbugs was some-
what lower, the proportions are similar. The somewhat 
higher proportion of Bohrbugs and lower proportion of 
Mandelbugs may be explained by the fact that all of 
the additional anomalies discussed by Green et al. [9] 
were observed during the cruise phase between launch 
and planetary orbit insertion, a period during which 
less activity takes place and which is better controlled 
and understood. This could allow fewer opportunities 
for conditions enabling Mandelbugs to manifest them-
selves to arise. Of course, the relatively small sample 
size prevents this additional analysis from being con-
clusive. It does, however, affirm the viability of the 
hypothesis that a future analysis of additional “true” 
flight software anomalies will not substantially change 
the results reported in this paper.  

6. Future work 

In our ongoing project, we are continuing the analy-
sis of the anomaly reports collected from the JPL Prob-
lem Reporting System. We are currently analyzing the 
anomaly reports for ground-based mission support 
software systems. 

Our goal is to use the project results as the basis for 
recommending more effective fault identification, re-
moval, and mitigation techniques for future robotic 
space mission software. The findings reported in this 
paper are a first step, since they provide us with evi-
dence for the relative importance of the different fault 
types for space mission system software. 
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