An Empirical Investigation of Fault Typesin Space Mission System Software

Michael Grottk
University of Erlangen-Nuremberg
Michael.Grottke @wiso.uni-erlangen.deCalifornia

Al

Jet Propulsion Laboratory,

len P. Nikor:¢ Kishor S. Trivec

Duke University

Institute of Technology kst@ee.duke.edu

Allen.P.Nikora@jpl.nasa.gov

Abstract

As space mission software becomes more complex,

the ability to effectively deal with faults is ieeasingly
important. The strategies that can be employed for
fighting a software bug depend on its fault typehiB
bugs are easily isolated and removed during soféwar
testing. Mandelbugs appear to behave chaotically.
While it is more difficult to detect these faulisridg
testing, it may not be necessary to correct thesina

ple retry after a failure occurrence may work. Agin
related bugs, a sub-class of Mandelbugs, can canse
increasing failure rate. For these faults, proaetiv
techniques may prevent future failures.

In this paper, we analyze the faults discovereth@
on-board software for 18 JPL/NASA space missions.
We present the proportions of the various faultesyp
and study how they have evolved over time. Moreover
we examine whether or not the fault type and aitgb
such as the failure effect are independent.

1. Introduction

Experience has shown that all but the simplest soft
ware systems contain faults (often called bugsjesr
fects). For describing characteristics of softwiadts
that cause failures during testing and operatioactp
tioners and researchers sometimes refer to “Botsrbug
“Heisenbugs,” “Mandelbugs,” and “aging-related
bugs.” However, there are no consistent definitifoms
most of these terms, and often the terms are ugbd w
out any explicit definition. In recent research Jj10
[11], [12], we have therefore tried to define tleents
as precisely as possible. Throughout this papeusee
the following definitions:

a) interactions of the software application with
its system-internal environment (hardware,
operating system, other applications); or

) influence of the timing of inputs and opera-

tions (relative to each other, or in terms of

the system runtime or calendar time); or
influence of the sequencing of operations;
sequencing is considered influential, if the
inputs could have been run in a different or-
der and if at least one of the other orders
would not have led to a failure.

Typically, a Mandelbug is difficult to isolate,

and/or the failures it causes are not systemayicall

reproducible. Mandelbug is the complementary an-
tonym of Bohrbug; i.e., each fault is either a Man-
delbug, or a Bohrbug.

b

Aging-related bug := A fault that is capable of
causing an increasing failure rate and/or degraded
performance. There are two possible reasons for
this phenomenon:

1. The fault causes the accumulation of internal er-
ror states.

2. The activation and/or error propagation of the
fault is influenced by the total time the system
has been running.

Aging-related bugs are a sub-type of Mandelbugs.

According to the relationships between the faytes;
each fault is a Bohrbug (BOH), a non-aging-related
Mandelbug (NAM), or an aging-related bug (ARB).

As we define them, Bohrbugs basically correspond
to solid [6] or hard [2] faults, while Mandelbugsea
soft [6] or elusive [2] faults, which Gray [6] alsefers
to as Heisenbugs. However, there are subtle differ-
ences. Our definitions do not classify a fault adoa

« Bohrbug := An easily isolated fault that manifests to its behavior in one specific case (like theufial oc-
consistently under a well-defined set of conditions currence that led to the detection of the faulgther,
because its activation and error propagation lackwe focus on thgotential manifestation characteristics.

“complexity” as defined below.

Mandelbug := A fault whose activation and/or error

propagation are complex. "Complexity" can be

caused by

1. a time lag between the fault activation and the
occurrence of a failure; or

2. the influence of indirect factors, i.e.,

In Proc. 40" IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447-456, 2010. © IEEE.

A fault is categorized as a Mandelbug if icapableof
causing failures that are not systematically repcod
ble. Likewise, a fault that iableto cause an increasing
failure rate is an aging-related bug even if idétected
during code inspection and has never had the “@fanc
to actually make a software system age. Our fda$i-c
sification is thus related tmherent properties of the

447

software fault. The distinction between potentinia tional profile. (Conversely, some of the faults oepd
actual fault behavior is similar to the distinctibe- by many users may have been Mandelbugs.) The evi-
tween trigger and symptom in Orthogonal Defect Clas dence concerning the percentage of Bohrbugs and
sification [4]. Mandelbugs in software systems presented in other
In [10], we showed that Lindsay invented the term studies is similarly inconclusive.
Heisenbug in the 1960s to refer to faults that stys- In an ongoing project, we are therefore classifying
ing a failure or that manifest differently when oaie software faults from current as well as historidBL
tempts to probe or isolate them. Programmers ago u missions to gain a better understanding of the grop
this term in the same manner [19]. Unlike Gray {6, tions of the different types of faults in flight feeare
therefore do not equate Heisenbugs with soft faults and ground software. Establishing a baseline will e
Despite these theoretical refinements, classifying able JPL to develop techniques and guidelines for
software faults into Bohrbugs and Mandelbugs will (i) improving the detectability of software faults,
usually not lead to a grossly different result ticae- (ii) masking the effects of faults, and (iii) idéying

gorizing them into hard and elusive faults. components most likely to contain difficult-to-dete
Fault classification is of practical interest, besa critical software faults.

the likelihood of being able to detect and remdwve t In this paper, we present our analysis of the $ault

faults during development and testing, as wellles t discovered in the flight software for 18 space iniss.

possible strategies for dealing with residual faualtir- We specifically examine:

ing mission operations depend on the fault typehrBo
bugs are the easiest to find during testing. Fault-
tolerance for an operational system in the preseifice
Bohrbugs can mainly be achieved with design diver- * differences in the fault type proportions across-mi
sity, since they deterministically cause failursie to sions; and _
their complex behavior, Mandelbugs are more difficu * the development of the fault type proportions
to find, isolate, and correct during testing. Sittue re- within a mission, as the mission duration increases

» the relationships between fault type and further
characteristics, like failure effect, and failuirsks

execution of an operation that failed because Mba- The paper is organized as follows: Section 2 resiew
delbug will often not result in another failure, Miel- related work in analyzing software faults acrosstimu
bUgS can be handled with software repllcatlon of — p|e projects_ In Section 3, we describe our apmdac

failure occurrences can be tolerated — with simple classifying faults, before presenting our analysfs
tries or more sophisticated approaches like check-fault data in Section 4. The results are discugsehe

pointing and recovery-oriented computing [3]. More |ight of other ongoing research in Section 5. Sect
specifically, for aging-related bugs, for which ttem- concludes the paper.

dency of causing a failure increases with the syste
run-time, proactive measures that clean the interna2 Reated work
system state and thus reduce the failure ratesatilu
This kind of “preventive maintenance” is referredas JPL collects information about incidents of unex-
“software rejuvenation” [15]. pected behavior of space systems in an institutiona
It is generally assumed that due to the complex be-anomaly reporting system. While many of the anoma-
havior of Mandelbugs (including aging-related bugs) lies represent system failures (i.e., incorrecttesys
the majority of software faults remaining after rtho behavior), some of them are based on misunderstand-
ough testing belong to this class. Most of the axgh iNgs of how the system is supposed to work. Patenti
making this claim support it by referring to a smal causes for observed space system failures inclugle p
collection of empirical studies [1], [6], [16]. Hawer, cedural errors, faults in the hardware or softwardne
the evidence contained in these studies is much lesground system, as well as faults in the hardwarther
conclusive than asserted. For example, Gray andsoftware of the flight system.
Siewiorek [7] state with respect to Adams' study of Studies of space system anomalies [8], [9], [13kha
maintenance records of North American IBM systems Previously been conducted at JPL as part of theaUlt
[1]: “Some software faults were reported many times reliability (UR) Program, sponsored by the NASA Of-
but such virulent bugs made up significantly ldemt1 ~ fice of Safety and Mission Assurance (OSMA).
percent of all reports.” While Adams indeed obsdrve Knowledge gained from these studies includes abett
that many faults merely affected few users, thissdo understanding of the relative proportions of differ
not necessarily mean that these faults were Mandel-categories of anomalies (e.g., operator misundeista
bugs. Rather, it is possible that a large percentsg ings vs. failures due to hardware faults vs. fafudue
these faults were Bohrbugs located in parts oftife to software faults), the times at which anomalies a
ware executed only by users with an unusual opera-more likely to be observed during mission operatjon

In Proc. 40" IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447-456, 2010. © IEEE. 448

and the types of corrective action most frequently fault in the flight software of one of the 18 miuss.
taken in response to observed anomalies. For exampl Note that there are anomalies (especially thosehvhi
Green et al. [8] and Hoffman et al. [13] analyzad i cannot be reproduced) for which the cause is ribt fu
flight anomalies reported for the Voyager and @alil understood. Such an anomaly was categorized as a
missions. Their findings included the result thiaeast duplicate and removed from the following analysis i
for Galileo, software was a significant generatér o the similarity of its description with an earlien@naly
failures; flight and ground software together wese suggested that both had been caused by the salhe fau
sponsible for somewhat over 40% of the in-flight Following the scheme presented in Section 1, we
anomalies recorded in the JPL Problem Reporting Sys categorized these software faults into Bohrbugs- no
tem. In [9], Green et al. analyzed in-flight anoiesl aging-related Mandelbugs, and aging-related bugs. W
reported for seven current and historic Mars exglor based our decisions on the textual descriptionthén
tion missions. Since recent missions to Mars have i anomaly reports, as well as discussions with approp
cluded both orbiter and lander spacecraft, andesinc ate development personnel in cases for which sielas
several missions were not successful upon reachindication could not initially be made. For thoselfador
Mars, the time period for comparing the missions wa which it was not possible to obtain sufficient infaa-
limited to the span covering the launch of eaclcepa tion for determining the classification, we intraeal
craft to its arrival at Mars. Their results indiedtthat the additional fault type “unknown” (UNK).

for the missions analyzed, software was a significa

source of anomalous behavior, as for the Galilee-mi 4. Analysis

sion; the proportion of anomalies due to flight and . .

ground software combined ranged from just under 1/24-1. Joint analysis of all software faults

to nearly 2/3, with later missions having a highes- Of the 520 software faults identified for all 18smi
portion of anomalies being due to software. However sjons, we classified 319 as Bohrbugs, 167 as non-
Green et al. did not go into further detail regagdi aging-related Mandelbugs and 23 as aging-related

different types of software faults. bugs. For 11 faults the type could not be deterthine
these faults were therefore assigned the fault type
3. Approach known”. The corresponding proportions of the fault

types BOH, NAM, ARB and UNK are thus 0.614,
0.321, 0.044 and 0.021, respectively.

As pointed out above, our fault type definitions fo
cus on thepotential manifestation characteristics of
faults, not on the fault behavior with respect tweo
specificfailure occurrence. The reasoning behind this
decision was that the fault type should dependnen i
herent fault characteristics. If, for example, alfavas
considered a Mandelbug if a specific failure it sed
cannot be reproduced, then the classification would
highly depend on the knowledge of the specific user
tester who encountered this failure. The analygis o
h faults in JPL/NASA flight software has confirmedrou
approach: Since many system parameters are con-

value of the multiple-choice “Cause” field in the .
anomaly reports, 653 of them were identified asrigyv stantly logged, JPL/NASA engineers are able to even
tually reproduce a large percentage of failures tha

been related to the flight software of our 18 nussi op: S ,o

We further analyzed each of these anomalies by theWOL!IOI be d'ff'C_U|t tq reproduce in “normal mdgsﬁk
simple but laborious process of reading the textieal settings. Despite this fact, based on our defingtithe
scriptions of the anomaly, its analysis and vestiion, underlying faults are always categorized as Mandel-

and the corrective action taken. 76 anomalies turne bugs if any.of Fhe criteria. of “complexiFy" app[iee
out not to be failures caused by flight softwarelts the fault activation or the error propagation metsa

but had causes such as operator mistakes or iatorre —v\\;\?ethler or not_the Crielr?ted fgulure fang’i repmedel; |
operating procedures; another 57 anomalies were ide e also mentioned that aging-related bugs arestault

tified as being related to software faults that ladd that qanpot_entially cause software aging, i.e., an if"
ready been responsible for previously reportedifed. creasing failure rate and/or performance degradatio

By excluding these 133 anomalies we derived atta se EVEN if such a fault should be detected (for exampl

of 520 anomalies, each of which represents a uniquedUring & code inspection) before it has had theoha

This paper focuses on 18 historic and ongoing
JPL/NASA missions. Seven of these missions were
related to earth orbiters, while eleven others were
planetary missions, for which the destination was o
or more astronomical bodies beyond the Earth-Moon
system. The destination for seven of these playetar
missions was Mars, one was an Outer Planets mjssion
two were targeted to comets, and one returned ssmpl
of the Solar wind.

For these missions, over 13,000 anomaly reports re
corded after deployment of the respective spacesys
from the developing facilityvere collected from JPL's
institutional Problem Reporting System. Based an t

In Proc. 40" IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447-456, 2010. © IEEE. 449

to actually lead to a decreasing performance,aitst f
type remains unchanged. However, in this casedtte f

that the fault could have caused aging may go unno-

ticed. Therefore, the percentage of faults categdras

the alternative that fault type and failure effact in-
deed associated depends on the error level (he., t
probability for wrongfully rejecting the null hyplogsis
if it is true) that we are willing to accept: Thalue of

aging-related bugs based on fault descriptions andthe chi-square statistic is 9.58, which correspdida

anomaly reports tends to be a lower bound for e t
fraction of faults that are aging-related bugs.
Based on the software faults for all 18 missions, w

p-value of 0.048. While the independence hypothesis
could be rejected at an error level of 5%, thisasthe
case at an error level of 1%. There is thus soriean

investigated whether there are any dependencies betion that fault type and failure effect might bekéed.

tween the fault type and three other criteria adicgr

to which anomalies are classified in JPL's Problem
Reporting System: the “criticality,” the “failurdfect,”
and the “failure risk.”

The variable “criticality” distinguishes betweenoan
malies with “unacceptable risk”, “accepted riskho*
significant risk”, and “no risk”. To test the nully-
pothesis “fault type and criticality are indepentien
against the alternative hypothesis that tbeydepend,
we employed a chi-square independence test. Tétis te
compares the contingency table, containing the -abso
lute number of joint observations of each failuypet
and each criticality, with the independence tabtm-
sisting of the expected number of joint observatidn
the two variables were indeed independent. To evalu
ate the disagreement between the two tables, fur ea
combination of fault type and criticality categatye
squared deviation between the observed and the ex
pected absolute frequency is computed and divided b
the expectation. The value of the test statistithes
sum of all of these normalized squared deviatidins.
holds true in general that under the null hypothedi
independence the test statistic follows a chi-sguar
distribution with {-1)(—1) degrees of freedom, where
andj represent the number of categories for the first
and the second variable, respectively [17], pp—447
449. In our example, the value of the test statisti

"Failure risk” is an assessment of the certaintyt th
the exact failure cause has been determined and tha
the corrective action will eliminate any known pess
bility of recurrence of the problem in flight. That-
ings are “known cause/certainty in corrective attio
“unknown cause/certainty in corrective action”,
“known cause/uncertainty in corrective action”, and
“unknown cause/uncertainty in corrective actiomi. |
our data, failures caused by Bohrbugs for which the
cause is known and the corrective action is cerain
clearly overrepresented; likewise, among failures
caused by non-aging-related Mandelbugs, those for
which either the cause is unknown or the corrective
action is uncertain are highly overrepresented. The
statistical significance of this relationship cam b
shown via a chi-square independence test of thie nul
hypothesis “fault type and failure risk are indegemt”
against the alternative hypothesis that they linked.

The value of the chi-square statistic obtained4i©38,
implying a p-value of 6.8e-12. The null hypothesis
thus be rejected at any common error level. Whiig t
result might have been expected due to the fapk ty
definitions, it is surprising that the dependensehiat
significant; As pointed out earlier, JPL/INASA engi-
neers are often able to reproduce failure caused by
Mandelbugs due to the wealth of system parameters
recorded. Although the logged information shoukbal

amounts to 6.41. Since the corresponding p-value ishelp them to identify the causes of such failutbs

0.379, the hypothesis that fault type and crittgadire
independent cannot be rejected at any reasonaiole er
level, like 5% or 1%. This means that our data db n

contain any evidence for an association between the

type of a fault and its criticality.

In JPL's Problem Reporting System, “failure effect”
assesses the effect of the problem/failure as ffad
occurred in flight without the benefit of correaiac-
tion or redundancy. The ratings are “negligibleseff,
“significant effect”, and “major or catastrophidedt”.
Comparing the contingency table with the independ-
ence table (both not shown in this paper) indictitas
Bohrbugs with “negligible” failure effects are diitly
underrepresented, while those with “major or cavast
phic” failure effects are overrepresented; the gjipo
seems to be true for non-aging-related Mandelbugs.
However, the decision of testing the null hypotkesi
“fault type and failure effect are independent” stex

In Proc. 40" IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447-456, 2010. © IEEE.

does not seem to be the case in general.

4.2. Fault type proportionsvs. launch order

While space missions vary in their duration, system
size, and fault density of the software, the fayfte
proportions might be similar across missions. We in
vestigate this conjecture in this section. 44 oé th
unique faults extracted from JPL’s Problem Repgrtin
System were discovered after deployment of theespac
system from the developing facility, but beforeriah.
Since the types of faults causing failures duringmal
operation could differ from the kinds of faults ctis-
ered in earlier phases, we drop these 44 faultshior
following analyses, focusing on the unique faules d
tected after launch.

Moreover, for 10 of the 18 missions considered so
far the number of unique software faults discovesed

450

very small: Thecombinednumber of unique faults
detected for these 10 missions amounts to 39, gvera
ing to a mere 3.9 faults per mission. Clearly, tfgse
missions the fault type proportions are unlikelyhtve
stabilized. Our examination of fault type propomso
within missions is therefore based on the remaining
eight missions. These missions are summarized in Ta
ble I. The smallest number of unique faults avddab
for any of these missions is 23; the total numbfer o
unique faults that our analysis is based on is 437.

For each mission the first column provides a unique
numerical identifier corresponding to launch ordes;,
mission ID 1 was the first mission launched. The-se
ond column represents the operational mission idurat
covered in our data. For historic missions, thisatan
is the period between launch and the end-of-mission
for current missions, it is the period between t#un
and the date on which the information was gathered
from JPL's Problem Reporting System. Showing the
durations in days would provide clues helping tenid
tify the missions. In order to maintain mission aym-
ity, all durations have therefore been normalized i
terms of the duration of the longest-running missio
(mission ID 1). Of course this normalization doed n
change the relative length of missions: For examgple
mission that lasted half as many days as missiofi 1D

Obviously, for three of the four most recent missio
(IDs 5, 7, and 8) the proportion of Bohrbugs igytar
than for any of the first four missions. Besides tor-
responding decrease in the proportion of all Mandel
bugs, we can also see that especially the propodio
aging-related bugs seems to be lower for the laisr
sions. These findings could suggest the following-c
clusions, which are not mutually exclusive:

* In more recent development projects, the propor-
tion of residual software faults that are Bohrbigys
larger than for earlier missions. There are two-pos
sible explanations:

0 The development process for recent missions
has changed so that a higher proportion of the
faults created are Bohrbugs.

o Alternatively, for more recent missions, fault
detection and removal techniques have become
more effective at reducing the number of Man-
delbugs remaining in the system at launch time.

For the more recent space missions, the operational

environment is better controlled. Non-aging-related

Mandelbugs and aging-related bugs for which a

failure occurrence requires specific and unusual en

vironmental conditions are now underrepresented
among the detected faults.

would be assigned a duration of 0.5. The remaining One might also think that the more recent missions
four columns represent the proportions of Bohrbugs, (but not the older ones) employ techniques like-sof
non-aging-related Mandelbugs, aging-related bugs, a ware replication or software rejuvenation, masking
faults of unknown type detected in the flight safte existing non-aging-related Mandelbugs and aging-
of the respective mission after launch. related bugs. However, within the missions analyzed

The last two rows of Table | list the (unweighted) there appear to be no significant differences ia th
average fault type proportions, as well as thedstah fault-tolerance strategies used. Such masking tsffec
deviations of the individual fault type proportionb- are thus unlikely to be the cause of our findings.
served. Parts of the variation might be explaingthie
time at which the space systems were developed,
launched and operated. Figure 1, in which the onssi
are arranged in launch order, shows how the fgp# t
proportions changed across missions.

unknown

aging-related bugs
non-aging-related Mandelbugs
Bohrbugs

| Jupup=|

1.00

Table I. Mission IDs, normalized durations and fault type i e s
proportions for the eight missions with the largest num-
ber of unique faults w 2
g o
\p | Normalized Fault type proportions H
duration | BOH | NAM | ARB | UNK g 3.
1 1.00(C 0.59¢ | 0.27C | 0.13% | 0.00C g °
2 0.911 0.571] 0.379 0.043 0.007 %
3 0.657 0.481 | 0.481 | 0.00C | 0.033 i ”g’.—
4 0.582 0.554| 0.369 0.062 0.015
5 0.29: 0.81C | 0.14% | 0.04¢ | 0.00C °
6 0.376 0.522| 0.435 0.000 0.043 S
7 0.226 0.815 0.130 0.019 0.037 1 2 3 4 5 6 7 8
8 0.171 0.64% | 0.347 | 0.01« | 0.00C Mission ID
Avg. proportions 0.635 0.307 0.03B 0.020 Figure 1. Fault type proportions for the eight missions
Standard cviations | 0.11¢ | 0.11Z | 0.04z | 0.01] with the largest number of unique faults

In Proc. 40" IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447-456, 2010. © IEEE. 451

There is yet another possibility: The findings ntigh
be an artifact of the analysis. As they were laedch
later, the duration covered by the data tends to be
shorter for the more recent missions as opposdideto
earlier missions, some of which are still ongoiBimnce
one may conjecture that the proportion of failures
caused by aging-related bugs increases with mission
duration (after all, it is the nature of these faulo
manifest themselves at a higher rate after longer p
ods of continuous operation), the observed diffeeen
in the fault type proportions could simply be driviey
the different mission runtimes.

Proportion of Bohrbugs

——- MissionID 1
— Mission ID 2
— Mission ID 3
Mission ID 4

4.3.

Fault type proportionsvs. mission run-
times

T
0.6

T
0.0 0.2 0.4 0.8 1.0

To investigate the conjecture formulated at the end
of the last section, we now study how the faultetyp
proportions evolve within missions over their romgis.

Figure 2 compares the development of the propor-
tion of Bohrbugs for the four earlier missions. Alh- These findings suggest that for the earlier founwf
times are again normalized by the total duration of eight missions, the fraction of Bohrbugs among all
mission ID 1; for this mission, information on tfault faults contained in the software at launch time may

Normalized mission runtime

Figure 2. Proportion of Bohrbugs for missions ID 1to 4

type proportions is therefore available up to anmedr
ized runtime of 1.0 (or 100%). For each missiorm th
proportion of Bohrbugs is updated whenever a new
fault is discovered in the flight software of thais-
sion. For example, after a runtime in days thatezor
sponds to around 19 percent of the total duratibn o
mission ID 1, the proportion of Bohrbugs for thasm
sion drops first to 83% and a very short time ldter
71%. After the same number of days since launah, th
proportion of Bohrbugs among the faults detected in
the software of mission ID 3 is 39%. The number of
days for which this mission is covered in our diata
about 66% of the duration of mission ID 1; therefor
the line related to mission ID 3 breaks off at»an
coordinate of 0.66.

Figure 2 does not indicate that within one mission
the proportion of Bohrbugs usually decreases mono-
tonically over the mission runtime. However, it doe
show that as a mission progresses and more and mor,
faults are discovered there tends to be less as&l le
fluctuation in the proportion of Bohrbugs withinras-
sion. What is more, across missions the proportions
seem to stabilize around almost the same value afte
similar number of days since launch. After a missio
runtime that corresponds to 40 percent of the turat
of mission ID 1, for all missions the proportion of
Bohrbugs lies in the interval (35%, 65%); aftera-n
malized runtime of 0.55, the lower bound of thigein
val has further risen to 45%. At a normalized nometi
of 0.75, the proportion of Bohrbugs has stabilia¢c
value around 58% for the two missions for whichadat
are still available.

In Proc. 40" IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447-456, 2010. © IEEE.

indeed have been very similar.

It is not surprising that this might be the casbeT
types of systems developed were similar to eachroth
in terms of complexity and functionality. Although
significant effort was undertaken to improve softava
process maturity over the years, the developmert-pr
esses themselves as defined by the project software
management plans were similar to each other, amd th
institutional standards governing software develepm
did not change significantly. Moreover, many of the
developers worked on more than one of these pmject

The variation in the proportion of Bohrbugs among
the detected faults across these missions (see Tjabl
could thus be explained by the differences in the m
sion runtimes covered by the data. To check this su
mise, we extract information on how the proportain
Bohrbugs develops over time for the earlier four-pr

jects in the form of 95% confidence intervals; thes

fitervals can then be compared with the availabla d
for the four later missions, to study whether or they
are substantially different from the earlier ones.

For each of 100 evenly-spaced normalized mission
runtimest; (i = 1, ..., 100) between zero and one, we
collect B;, the set of current Bohrbug proportions for
those missions (among missions ID 1 to 4) whose nor
malized duration is greater than or equat;t&Ve de-
note the cardinality of the s& by k. (For example,
for the normalized runtime = 0.4, observations are
still available for allk; = 4 missions, with the current
set of Bohrbug proportionB; = {0.417, 0.455, 0.576,
0.605}; after a normalized runtime df= 0.6, only
k; = 3 missions provide information about the current

452

proportion of Bohrbugs, andd; = {0.440, 0.458, [P
0.595}.) The bounds of a 95% confidence interval fo f :
the proportion of Bohrbugs gtcan only be determined .' T
if k is larger than one. To this end, a bootstrapping- S+ i}
type algorithm is then employed. i

Bootstrapping is a data-based simulation approach
accounting for the fact that in inferential statistthek
observations available are a random sample from a
(possibly infinite) sample space [5]. To evaluateiv
ability, bootstrapping produces many samples aflsiz
each time drawing from th& observations without
replacement, and calculates the statistics of ester
(e.g., the sample mean) for all of these samples.

0.6

0.2

Proportion of Bohrbugs
0.4
| |

""" 95% confidence interval

Since the number of observations B is always [== MissionID 5
small, our bootstrapping-type algorithm does noteha =R — MissionID 6
to rely on sampling. Instead, it directly creatégas- 00 0o 04 06 08 10

sible combinations ok, values chosen fron®; with
replacement. Then a distribution is fitted to eath

Normalized mission runtime

Figure 3. Proportion of Bohrbugs for missions ID 5 and 6,

thesen; = kik‘ combination<C; (j =1, ...,m): and 95% confidence interval based on missions ID 1 to 4
* If all values inC; are identical, then the fitted dis- Figyre 3 and Figure 4 also compare the confidence
tribution is a singular distribution at this value. interval established for the four earlier missiovigh

» Otherwise, a beta distribution is fitted to theues the development of the Bohrbug proportions for the
domain is restricted to the interval from zero and three of the later missions the Bohrbug propori®n
one, the beta distribution is often used to model higher than for the earlier missions. We now seenfr
fractions. HOV_/ever, sir!ce the end-_points of the in- Figure 3 and Figure 4 that for mission ID 8 thefeif
terval are not included in the domain, values @ze ence in the Bohrbug proportion could be explaingd b
and one contained i@; (which may especially be tne fact that at short mission runtimes the fayttet
observed for short mission runtimes) are replaced proportions have not yet stabilized as much as afte
by values slightly larger than zero and less than |onger runtimes. However, for missions ID 5 and 7
one, respectively. several observations lie outside the 95% confidence

To derive the 95% confidence interval for the Balyb ~ interval, suggesting that there may indeed be ferelif

proportion at normalized mission runtimie we then ence between the first four and these later mission

sample 2000 values from the mixed distribution in
which each of the, fitted distributions is given weight

1/n;. The lower (upper) bound of the confidence inter-

val is the lower (upper) empirical 2.5% quantiletiod

2000 values sampled.

We implemented this bootstrapping-type approach
for analyzing the data in the programming language
provided by the statistics software R [18]. FigBrand
Figure 4 show the 95% confidence interval for the p
portion of Bohrbugs as dotted lines. The growirabst
lization with mission runtime — already observed in
Figure 2 — is reflected in the decreasing widththa
confidence interval (i.e., the difference betweésn i ;
upper and lower bounds tends to get smaller). For - S 95% confidence interval
normalized runtimes larger than 0.582, parts o$ thi . ! - m:zz:gg:gg
decline can be attributed to the fact that the walc S
tions are based on a smaller number of missions-Ho 0.0 0.2 014 016 018 lfo
ever, even for shorter mission runtimes the rednati Normalized mission runtime

variability is clearly noticeable. Figure 4. Proportion of Bohrbugs for missions ID 7 and 8,
and 95% confidence interval based on missions ID 1to 4

o
—

0.8

Proportion of Bohrbugs
0.4

0.2
I

In Proc. 40" IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447-456, 2010. © IEEE. 453

o | e
- - X .
--- MissioniID2 | | 95% confidence interval

%) — Mission ID 2 @ —= MissionID 7
g — Mission ID 3 _g — Mission ID 8
% | -=*- MissionID 4 T 2
- @ S ©
3 3
= =
el o
Q Q
T Q4 % <@
2 -
[=2] j=2
© © .
T o<« A f
o - = c L .
e ° g ° L
k] k]
s S | MW T T T
£ o | £ oo
a a

o o |

S o

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. Proportion of non-aging-related Mandelbugs for

Normalized mission runtime

missionsID1to 4

Normalized mission runtime

Figure 7. Proportion of non-aging-related Mandelbugs for
missions ID 7 and 8, and 95% confidence interval based
on missions ID 1to 4

Since each software fault is either a Bohrbug or & The data depicted in Figure 5 indicate that for the

Mandelbug, the results presented for Bohrbugs analo foyr earlier missions the variability in the profion of
gously apply to the category of all Mandelbugs.-Spe non-aging-related Mandelbugs tends to get less with
cifically, the evidence suggests that the fracoomi- increasing mission duration, although it is notacle

tial faults that are Mandelbugs may be smallemfis- whether the proportions will in the end settle grw
sions ID 5 and 7 than for the first four missiomaa

lyzed.

similar values. Corresponding with this behavior is
again a decreasing trend in the widths of the 95% c

_ However, this does not necessarily mean that thesgigence interval derived with the bootstrappingetyp
findings also apply to the two sub-types of Mandel- gigorithm, as can be seen in Figure 6 and Figure 7.
bugs. The same analyses were therefore also carried pgain, it is missions ID 5 and 7 for which some of

out for the proportions of non-aging-related Mandel the proportions of non-aging-related Mandelbugs lie

bugs. The results are shown in Figure 5 to Figure 7

0.6 0.8 1.0
I

0.4

Proportion of non-aging-related Mandelbugs
0.2
|

0.0
I

""" 95% confidence interval

—= MissionID5
— MissionID 6

Figure 6. Proportion of non-aging-related Mandelbugs for
missions ID 5 and 6, and 95% confidence interval based

T T
0.2 0.4 0.6 0.8

Normalized mission runtime

on missions ID 1to 4

1.0

outside the 95% confidence interval derived for the
earlier missions. This could mean that for thess-mi
sions the fraction of non-aging-related Mandelbugs
among all initial software faults is lower than fibhre
first four missions.

Of course, different initial fault type proportioase
not the only possible explanation for the highewgr)
proportions of Bohrbugs (non-aging-related Mandel-
bugs) observed for missions ID 5 and 7. Insteagkeh
initial proportions could be similar, but the siaa-
tion might occur later than for the earlier mission
This might for example happen if the intended noissi
duration is longer for the later missions, because-
aging-related Mandelbugs can be expected to show
themselves at a higher rate once operational Gnttr
are relaxed after a mission’s primary goals havwenbe
achieved.

We finally analyzed the proportions of aging-rethte
bugs; however, additional figures are omitted due t
space constraints. The proportions of aging-related
bugs initially observed during the four earlier siims
showed less overall variability than the proporsiai
the other fault types. Moreover, the proportiorebist

In Proc. 40" IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447-456, 2010. © IEEE. 454

lize to a lesser extent as mission runtime inciease
clear trend is discernible for the widths of theX®5
confidence intervals determined with the bootstrap-
ping-type algorithm. Comparing the proportions of
aging-related bugs for the four later missions wita
95% confidence intervals based on the four eantigr
sions, we could not find any clear differences.

5. Discussion

We have analyzed software anomaly reports for 18 JP
robotic exploration space missions to study the de-
pendencies between the fault type and further chara
teristics like failure effect, and failure risk;ethpropor-
tions of Bohrbugs, non-aging-related Mandelbugsl, an
aging-related bugs among all software faults detbct
changes in these proportions in the course of aioms
and variations in the fault type proportions acnoss-
sions. Our findings are as follows:

1. Although the wealth of system parameters logged

enables engineers at JPL/NASA to reproduce many
of the failures caused by Mandelbugs, there is a

highly significant relationship between the fault
type and the failure risk: For failures due to Man-

delbugs the cause is often questionable or not un-

derstood. However, at an error level of 1%, the hy-
potheses that fault type and criticality as well as
fault type and failure effect are independent could
not be rejected.

2. Among the 520 software faults detected in all 18

missions after deployment of the space system from

the developing facility, 61.4% were Bohrbugs, and
36.5% were Mandelbugs; this latter number in-
cludes those 4.4% of all software faults that were
aging-related bugs. While these proportions high-
light the importance of Mandelbugs, they also seem
to indicate that additional testing and technieal r
view prior to deployment of the space system from
the developing facility could further reduce the
number of Bohrbugs found later. Detailed analyses
of testing effort and defect repair times will ke r
quired to develop more effective strategies.

3. The widths of the confidence intervals for the pro-
portions of Bohrbugs and non-aging-related Man-
delbugs calculated based on four early missions

showed decreasing trends. This suggests that afte

long mission durations the proportions of Bohr-

bugs/non-aging-related Mandelbugs among the de-

tected faults are similar across missions. A péssib

explanation is that at launch time, after completio

of the testing phase, the proportion of Bohrbugs
among the residual flight software faults is simila

for these four missions; the same applies to the in

tial proportion of non-aging-related Mandelbugs.

4. The decreasing widths of the confidence intervals
also imply that much of the variation in the fault
type proportions of the four early missions seen in
Table | can be explained by the fact that for short
running missions with a low absolute number of
faults detected the fault type proportions have not
yet stabilized. This may also be the case for the
four more recent missions analyzed, although there
is some evidence that the flight software of earlie
missions contained a smaller proportion of Bohr-
bugs and a higher proportion of Mandelbugs.

These findings will be able to provide guidanceha
fault detection, identification, and recovery (FDIR
techniques implemented in space mission systems, as
well as guidance in the verification strategiesbi®
used during development. For example, since Mandel-
bugs are difficult to detect and remove duringsaft
testing, the rather large proportion of Mandelbugs
among the residual faults at launch time indicahes
potential benefit of employing verification techo&s
such as model checking and theorem proving in addi-
tion to dynamic testing. A significant proportiohtbe
Mandelbugs we found are related to the effectmef i
struction ordering in multi-threaded systems (eace
conditions, deadlocks). Techniques such as model
checking were developed to find these types ofalefe
for instance, the SPIN model checker [14] was devel
oped specifically to find timing-related faults te-
lephony protocols. These faults can be very diffitm

find by testing because (i) testers will usuallyt he
able to control the order in which instructions axe-
cuted for the system under test, and (ii) the cdaypu
tional state space is almost always too large sbak

of the possible execution orderings, even if thstete
did have sufficiently detailed control.

Our analyses are based on those anomalies cldssifie
as related to flight software according to the “S&lu
field. Recent work by Green et al. [9] as parttaf UR
Program indicates that in the JPL Problem Reporting
System the number of software-related anomalies may
be significantly undercounted. Green et al. analyine
detail approximately 1300 anomalies of all types be
tween launch and orbit insertion for seven Mars-mis
sions. These anomalies were categorized according t
type (e.g., flight software, flight hardware) not bx-
Bmination of the “Cause” field of the anomaly repor
but by a detailed reading of the text describing th
anomalous behavior, the analysis conducted to deter
mine the cause, and the final corrective actiorcaBee
many of the anomaly reports that were analyzed for
Green’s UR task form a subset of the anomaly report
that we analyzed, any of Green’s results that nfay a
fect the validity of our work should be considered.

In Proc. 40" IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447-456, 2010. © IEEE. 455

Of particular interest is the finding by Green ét a Acknowledgments
that the number of flight software anomalies idféexi)]]]
by reading the descriptive text of the anomaly repo The work des_cnbed in this paper was carne_d out at
was approximately six times the number of flighttso the Jet Propulsion Laboratory, California Ir_13t|tmtfa
ware anomalies identified by the anomaly reports’ T€chnology, and was sponsored by the National Aero-
“Cause” field. This indicates that the number oftso nautics and Space Administration’s Office of Safety
ware anomalies may be significantly underreported i and Mission Assurance Software Assurance Research

the JPL Problem Reporting System.

Program. This task is managed locally by JPL's Assu

We studied additional anomalies that were not part @1c€ Technology Program Office.

of the original analysis to determine the effectttuf

finding on our results. From the Mars missions ana- REferences

lyzed by Green et al. [9], we identified 62 fligbft-
ware anomalies that had been labelled as othes type
anomaly (e.g., flight hardware, procedural) in the [2]
“Cause” field and classified them according to orif

teria. The proportions of the types BOH, NAM, ARB
and UNK for these additional anomalies were 0.694, [3]
0.258, 0.016, and 0.032. By way of comparison, the
global proportions of the fault types BOH, NAM, ARB
and UNK reported at the beginning of Section 4.tewe
0.614, 0.321, 0.044 and 0.021. Although for thei-add
tional anomalies the proportion of Bohrbugs was [5]
higher and the proportion of Mandelbugs was some- ¢,
what lower, the proportions are similar. The somatwh
higher proportion of Bohrbugs and lower proportan
Mandelbugs may be explained by the fact that all of [7]
the additional anomalies discussed by Green €9Rl. (8]
were observed during the cruise phase betweenhaunc
and planetary orbit insertion, a period during wahic
less activity takes place and which is better ailed

and understood. This could allow fewer opportusitie
for conditions enabling Mandelbugs to manifest them

(1

(4]

(9]

selves to arise. Of course, the relatively smathida [10]

size prevents this additional analysis from being-c

clusive. It does, however, affirm the viability tfe [11]

hypothesis that a future analysis of additionaliétr

flight software anomalies will not substantiallyacige

the results reported in this paper. [12]
13

6. Futurework 13l

In our ongoing project, we are continuing the analy
sis of the anomaly reports collected from the JRibP [14]

lem Reporting System. We are currently analyzirey th
anomaly reports for ground-based mission support[l5]
software systems.

Our goal is to use the project results as the Hasis
recommending more effective fault identificatioe; r
moval, and mitigation techniques for future robotic

[16]

space mission software. The findings reported ia th [17)
paper are a first step, since they provide us with
dence for the relative importance of the differfntlt (18]
types for space mission system software.

[19]

In Proc. 40" IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447-456, 2010. © IEEE.

E. N. Adams, Optimizing preventive service of saftes prod-
ucts,|BM Journal of Res. & Developme28(1):2—-14, 1984.

A. Avizienis, J.-C. Laprie, B. Randell, and C. Lavehr. Basic
concepts and taxonomy of dependable and secureutimgp
IEEE Transactions on Dependable and Secure Computin
1(1):11-33, 2004.

G. Candea, J. Cutler, and A. Fox, Improving avditgbwith
recursive microreboots: a soft-state system casaysPer-
formance Evaluatio®6(1-4):213-248, 2004.

R. Chillarege. Orthogonal Defect ClassificationMn R. Lyu,
editor, Handbook of Software Reliability Engineering
McGraw-Hill, New York, 1995.

B. Efron and R. J. TibshiranAn Introduction to the Bootstrap
Chapman & Hall, New York, 1993.

J. Gray, Why do computers stop and what can be dooet it?
in Proc. Fifth Symposium on Reliability in Distribut8glstems
1986, pp. 3-12.

J. Gray and D. P. Siewiorek, High-availability cangr sys-
tems,|EEE ComputeR4(9):39-48, 1991.

N. W. Green, A. R. Hoffman, and H. B. Garrett, Arayn
trends for long-life robotic spacecraftpurnal of Spacecraft
and Rocketd3(1):218-224, 2006.

N. W. Green, A. R. Hoffman, T. K. M. Schow, and B.
Garrett, Anomaly trends for robotic missions to Mdmplica-
tions for mission reliability, AIAA 2006-269, ifProc. 44th
AIAA Aerospace Sciences Meeting and ExHa006, pp. 1-9.
M. Grottke and K. S. Trivedi, Software faults, sedte aging
and software rejuvenatiodpurnal of the Reliability Engineer-
ing Association of JapaR7(7):425-438, 2005.

M. Grottke and K. S. Trivedi, A classification obfsvare
faults, in Supplemental Proc. Sixteenth International Sympo-
sium on Software Reliability Engineerir@p05, pp. 4.19-4.20.
M. Grottke and K. S. Trivedi, Fighting bugs: Remonedry, re-
plicate, and rejuvenatéEEE Computed0(2): 107-109, 2007.
A. R. Hoffman, N. W. Green, and H. B. Garrett, Asssaent of
in-flight anomalies of long life outer planet misss, inProc.
European Space Agency 5th International Symposiuanyi-
ronmental Testing for Space Programn2304, pp. 43-50.

G. J. HolzmannThe SPIN Model Checker: Primer and Refer-
ence ManualAddison-Wesley, Boston, 2003.

Y. Huang, C. Kintala, N. Kolettis, and N. Fultonpfvare
rejuvenation: Analysis, module and applications, Rnoc.
Twenty-fifth International Symposium on Fault-Taler Com-
puting 1995, pp. 381-390.

I. Lee and R. K. lyer, Software dependability ire thandem
GUARDIAN system, IEEE Trans. Software Engineering
21(5):455-467, 1995.

P. Newbold, Statistics for Business and Economidhird
edition. Prentice-Hall, Englewood Cliffs, 1991.

R Development Core TearR: A Language and Environment
for Statistical ComputingReference index, v. 2.10.1, R Foun-
dation for Statistical Computing, Vienna, Austi2809.

E. S. RaymondThe New Hacker's DictionaryMIT Press,
Cambridge, 1991.

456

