
In Proc. 40th IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447–456, 2010. © IEEE. 447

Abstract

As space mission software becomes more complex,
the ability to effectively deal with faults is increasingly
important. The strategies that can be employed for
fighting a software bug depend on its fault type. Bohr-
bugs are easily isolated and removed during software
testing. Mandelbugs appear to behave chaotically.
While it is more difficult to detect these faults during
testing, it may not be necessary to correct them; a sim-
ple retry after a failure occurrence may work. Aging-
related bugs, a sub-class of Mandelbugs, can cause an
increasing failure rate. For these faults, proactive
techniques may prevent future failures.

In this paper, we analyze the faults discovered in the
on-board software for 18 JPL/NASA space missions.
We present the proportions of the various fault types
and study how they have evolved over time. Moreover,
we examine whether or not the fault type and attributes
such as the failure effect are independent.

1. Introduction

Experience has shown that all but the simplest soft-
ware systems contain faults (often called bugs, or de-
fects). For describing characteristics of software faults
that cause failures during testing and operation, practi-
tioners and researchers sometimes refer to “Bohrbugs,”
“Heisenbugs,” “Mandelbugs,” and “aging-related
bugs.” However, there are no consistent definitions for
most of these terms, and often the terms are used with-
out any explicit definition. In recent research [10],
[11], [12], we have therefore tried to define the terms
as precisely as possible. Throughout this paper we use
the following definitions:

• Bohrbug := An easily isolated fault that manifests
consistently under a well-defined set of conditions,
because its activation and error propagation lack
“complexity” as defined below.

• Mandelbug := A fault whose activation and/or error
propagation are complex. "Complexity" can be
caused by
1. a time lag between the fault activation and the

occurrence of a failure; or
2. the influence of indirect factors, i.e.,

a) interactions of the software application with
its system-internal environment (hardware,
operating system, other applications); or

b) influence of the timing of inputs and opera-
tions (relative to each other, or in terms of
the system runtime or calendar time); or

c) influence of the sequencing of operations;
sequencing is considered influential, if the
inputs could have been run in a different or-
der and if at least one of the other orders
would not have led to a failure.

Typically, a Mandelbug is difficult to isolate,
and/or the failures it causes are not systematically
reproducible. Mandelbug is the complementary an-
tonym of Bohrbug; i.e., each fault is either a Man-
delbug, or a Bohrbug.

• Aging-related bug := A fault that is capable of
causing an increasing failure rate and/or degraded
performance. There are two possible reasons for
this phenomenon:
1. The fault causes the accumulation of internal er-

ror states.
2. The activation and/or error propagation of the

fault is influenced by the total time the system
has been running.

Aging-related bugs are a sub-type of Mandelbugs.

According to the relationships between the fault types,
each fault is a Bohrbug (BOH), a non-aging-related
Mandelbug (NAM), or an aging-related bug (ARB).

As we define them, Bohrbugs basically correspond
to solid [6] or hard [2] faults, while Mandelbugs are
soft [6] or elusive [2] faults, which Gray [6] also refers
to as Heisenbugs. However, there are subtle differ-
ences. Our definitions do not classify a fault according
to its behavior in one specific case (like the failure oc-
currence that led to the detection of the fault). Rather,
we focus on the potential manifestation characteristics.
A fault is categorized as a Mandelbug if it is capable of
causing failures that are not systematically reproduci-
ble. Likewise, a fault that is able to cause an increasing
failure rate is an aging-related bug even if it is detected
during code inspection and has never had the “chance”
to actually make a software system age. Our fault clas-
sification is thus related to inherent properties of the

An Empirical Investigation of Fault Types in Space Mission System Software

Michael Grottke
University of Erlangen-Nuremberg

Michael.Grottke@wiso.uni-erlangen.de

Allen P. Nikora
Jet Propulsion Laboratory,

California Institute of Technology
Allen.P.Nikora@jpl.nasa.gov

Kishor S. Trivedi
Duke University
kst@ee.duke.edu

In Proc. 40th IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447–456, 2010. © IEEE. 448

software fault. The distinction between potential and
actual fault behavior is similar to the distinction be-
tween trigger and symptom in Orthogonal Defect Clas-
sification [4].

In [10], we showed that Lindsay invented the term
Heisenbug in the 1960s to refer to faults that stop caus-
ing a failure or that manifest differently when one at-
tempts to probe or isolate them. Programmers also use
this term in the same manner [19]. Unlike Gray [6], we
therefore do not equate Heisenbugs with soft faults.

Despite these theoretical refinements, classifying
software faults into Bohrbugs and Mandelbugs will
usually not lead to a grossly different result than cate-
gorizing them into hard and elusive faults.

Fault classification is of practical interest, because
the likelihood of being able to detect and remove the
faults during development and testing, as well as the
possible strategies for dealing with residual faults dur-
ing mission operations depend on the fault type. Bohr-
bugs are the easiest to find during testing. Fault-
tolerance for an operational system in the presence of
Bohrbugs can mainly be achieved with design diver-
sity, since they deterministically cause failures. Due to
their complex behavior, Mandelbugs are more difficult
to find, isolate, and correct during testing. Since the re-
execution of an operation that failed because of a Man-
delbug will often not result in another failure, Mandel-
bugs can be handled with software replication or – if
failure occurrences can be tolerated – with simple re-
tries or more sophisticated approaches like check-
pointing and recovery-oriented computing [3]. More
specifically, for aging-related bugs, for which the ten-
dency of causing a failure increases with the system
run-time, proactive measures that clean the internal
system state and thus reduce the failure rate are useful.
This kind of “preventive maintenance” is referred to as
“software rejuvenation” [15].

It is generally assumed that due to the complex be-
havior of Mandelbugs (including aging-related bugs)
the majority of software faults remaining after thor-
ough testing belong to this class. Most of the authors
making this claim support it by referring to a small
collection of empirical studies [1], [6], [16]. However,
the evidence contained in these studies is much less
conclusive than asserted. For example, Gray and
Siewiorek [7] state with respect to Adams' study of
maintenance records of North American IBM systems
[1]: “Some software faults were reported many times,
but such virulent bugs made up significantly less than 1
percent of all reports.” While Adams indeed observed
that many faults merely affected few users, this does
not necessarily mean that these faults were Mandel-
bugs. Rather, it is possible that a large percentage of
these faults were Bohrbugs located in parts of the soft-
ware executed only by users with an unusual opera-

tional profile. (Conversely, some of the faults reported
by many users may have been Mandelbugs.) The evi-
dence concerning the percentage of Bohrbugs and
Mandelbugs in software systems presented in other
studies is similarly inconclusive.

In an ongoing project, we are therefore classifying
software faults from current as well as historical JPL
missions to gain a better understanding of the propor-
tions of the different types of faults in flight software
and ground software. Establishing a baseline will en-
able JPL to develop techniques and guidelines for
(i) improving the detectability of software faults,
(ii) masking the effects of faults, and (iii) identifying
components most likely to contain difficult-to-detect
critical software faults.

In this paper, we present our analysis of the faults
discovered in the flight software for 18 space missions.
We specifically examine:

• the relationships between fault type and further
characteristics, like failure effect, and failure risk;

• differences in the fault type proportions across mis-
sions; and

• the development of the fault type proportions
within a mission, as the mission duration increases.

The paper is organized as follows: Section 2 reviews
related work in analyzing software faults across multi-
ple projects. In Section 3, we describe our approach to
classifying faults, before presenting our analysis of
fault data in Section 4. The results are discussed in the
light of other ongoing research in Section 5. Section 6
concludes the paper.

2. Related work

JPL collects information about incidents of unex-
pected behavior of space systems in an institutional
anomaly reporting system. While many of the anoma-
lies represent system failures (i.e., incorrect system
behavior), some of them are based on misunderstand-
ings of how the system is supposed to work. Potential
causes for observed space system failures include pro-
cedural errors, faults in the hardware or software of the
ground system, as well as faults in the hardware or the
software of the flight system.

Studies of space system anomalies [8], [9], [13] have
previously been conducted at JPL as part of the Ultra-
reliability (UR) Program, sponsored by the NASA Of-
fice of Safety and Mission Assurance (OSMA).
Knowledge gained from these studies includes a better
understanding of the relative proportions of different
categories of anomalies (e.g., operator misunderstand-
ings vs. failures due to hardware faults vs. failures due
to software faults), the times at which anomalies are
more likely to be observed during mission operations,

In Proc. 40th IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447–456, 2010. © IEEE. 449

and the types of corrective action most frequently
taken in response to observed anomalies. For example,
Green et al. [8] and Hoffman et al. [13] analyzed in-
flight anomalies reported for the Voyager and Galileo
missions. Their findings included the result that at least
for Galileo, software was a significant generator of
failures; flight and ground software together were re-
sponsible for somewhat over 40% of the in-flight
anomalies recorded in the JPL Problem Reporting Sys-
tem. In [9], Green et al. analyzed in-flight anomalies
reported for seven current and historic Mars explora-
tion missions. Since recent missions to Mars have in-
cluded both orbiter and lander spacecraft, and since
several missions were not successful upon reaching
Mars, the time period for comparing the missions was
limited to the span covering the launch of each space-
craft to its arrival at Mars. Their results indicated that
for the missions analyzed, software was a significant
source of anomalous behavior, as for the Galileo mis-
sion; the proportion of anomalies due to flight and
ground software combined ranged from just under 1/2
to nearly 2/3, with later missions having a higher pro-
portion of anomalies being due to software. However,
Green et al. did not go into further detail regarding
different types of software faults.

3. Approach

This paper focuses on 18 historic and ongoing
JPL/NASA missions. Seven of these missions were
related to earth orbiters, while eleven others were
planetary missions, for which the destination was one
or more astronomical bodies beyond the Earth-Moon
system. The destination for seven of these planetary
missions was Mars, one was an Outer Planets mission,
two were targeted to comets, and one returned samples
of the Solar wind.

For these missions, over 13,000 anomaly reports re-
corded after deployment of the respective space system
from the developing facility were collected from JPL’s
institutional Problem Reporting System. Based on the
value of the multiple-choice “Cause” field in the
anomaly reports, 653 of them were identified as having
been related to the flight software of our 18 missions.
We further analyzed each of these anomalies by the
simple but laborious process of reading the textual de-
scriptions of the anomaly, its analysis and verification,
and the corrective action taken. 76 anomalies turned
out not to be failures caused by flight software faults,
but had causes such as operator mistakes or incorrect
operating procedures; another 57 anomalies were iden-
tified as being related to software faults that had al-
ready been responsible for previously reported failures.
By excluding these 133 anomalies we derived at a set
of 520 anomalies, each of which represents a unique

fault in the flight software of one of the 18 missions.
Note that there are anomalies (especially those which
cannot be reproduced) for which the cause is not fully
understood. Such an anomaly was categorized as a
duplicate and removed from the following analysis if
the similarity of its description with an earlier anomaly
suggested that both had been caused by the same fault.

Following the scheme presented in Section 1, we
categorized these software faults into Bohrbugs, non-
aging-related Mandelbugs, and aging-related bugs. We
based our decisions on the textual descriptions in the
anomaly reports, as well as discussions with appropri-
ate development personnel in cases for which a classi-
fication could not initially be made. For those faults for
which it was not possible to obtain sufficient informa-
tion for determining the classification, we introduced
the additional fault type “unknown” (UNK).

4. Analysis

4.1. Joint analysis of all software faults

Of the 520 software faults identified for all 18 mis-
sions, we classified 319 as Bohrbugs, 167 as non-
aging-related Mandelbugs and 23 as aging-related
bugs. For 11 faults the type could not be determined;
these faults were therefore assigned the fault type “un-
known”. The corresponding proportions of the fault
types BOH, NAM, ARB and UNK are thus 0.614,
0.321, 0.044 and 0.021, respectively.

As pointed out above, our fault type definitions fo-
cus on the potential manifestation characteristics of
faults, not on the fault behavior with respect to one
specific failure occurrence. The reasoning behind this
decision was that the fault type should depend on in-
herent fault characteristics. If, for example, a fault was
considered a Mandelbug if a specific failure it caused
cannot be reproduced, then the classification would
highly depend on the knowledge of the specific user or
tester who encountered this failure. The analysis of
faults in JPL/NASA flight software has confirmed our
approach: Since many system parameters are con-
stantly logged, JPL/NASA engineers are able to even-
tually reproduce a large percentage of failures that
would be difficult to reproduce in “normal” industrial
settings. Despite this fact, based on our definitions the
underlying faults are always categorized as Mandel-
bugs if any of the criteria of “complexity” applies to
the fault activation or the error propagation mechanism
– whether or not the related failure can be reproduced.

We also mentioned that aging-related bugs are faults
that can potentially cause software aging, i.e., an in-
creasing failure rate and/or performance degradation.
Even if such a fault should be detected (for example,
during a code inspection) before it has had the chance

In Proc. 40th IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447–456, 2010. © IEEE. 450

to actually lead to a decreasing performance, its fault
type remains unchanged. However, in this case the fact
that the fault could have caused aging may go unno-
ticed. Therefore, the percentage of faults categorized as
aging-related bugs based on fault descriptions and
anomaly reports tends to be a lower bound for the true
fraction of faults that are aging-related bugs.

Based on the software faults for all 18 missions, we
investigated whether there are any dependencies be-
tween the fault type and three other criteria according
to which anomalies are classified in JPL’s Problem
Reporting System: the “criticality,” the “failure effect,”
and the “failure risk.”

The variable “criticality” distinguishes between ano-
malies with “unacceptable risk”, “accepted risk”, “no
significant risk”, and “no risk”. To test the null hy-
pothesis “fault type and criticality are independent”
against the alternative hypothesis that they do depend,
we employed a chi-square independence test. This test
compares the contingency table, containing the abso-
lute number of joint observations of each failure type
and each criticality, with the independence table, con-
sisting of the expected number of joint observations if
the two variables were indeed independent. To evalu-
ate the disagreement between the two tables, for each
combination of fault type and criticality category the
squared deviation between the observed and the ex-
pected absolute frequency is computed and divided by
the expectation. The value of the test statistic is the
sum of all of these normalized squared deviations. It
holds true in general that under the null hypothesis of
independence the test statistic follows a chi-square
distribution with (i–1)(j–1) degrees of freedom, where i
and j represent the number of categories for the first
and the second variable, respectively [17], pp. 447–
449. In our example, the value of the test statistic
amounts to 6.41. Since the corresponding p-value is
0.379, the hypothesis that fault type and criticality are
independent cannot be rejected at any reasonable error
level, like 5% or 1%. This means that our data do not
contain any evidence for an association between the
type of a fault and its criticality.

In JPL’s Problem Reporting System, “failure effect”
assesses the effect of the problem/failure as if it had
occurred in flight without the benefit of corrective ac-
tion or redundancy. The ratings are “negligible effect”,
“significant effect”, and “major or catastrophic effect”.
Comparing the contingency table with the independ-
ence table (both not shown in this paper) indicates that
Bohrbugs with “negligible” failure effects are slightly
underrepresented, while those with “major or catastro-
phic” failure effects are overrepresented; the opposite
seems to be true for non-aging-related Mandelbugs.
However, the decision of testing the null hypothesis
“fault type and failure effect are independent” versus

the alternative that fault type and failure effect are in-
deed associated depends on the error level (i.e., the
probability for wrongfully rejecting the null hypothesis
if it is true) that we are willing to accept: The value of
the chi-square statistic is 9.58, which corresponds to a
p-value of 0.048. While the independence hypothesis
could be rejected at an error level of 5%, this is not the
case at an error level of 1%. There is thus some indica-
tion that fault type and failure effect might be linked.

”Failure risk” is an assessment of the certainty that
the exact failure cause has been determined and that
the corrective action will eliminate any known possi-
bility of recurrence of the problem in flight. The rat-
ings are “known cause/certainty in corrective action”,
“unknown cause/certainty in corrective action”,
“known cause/uncertainty in corrective action”, and
“unknown cause/uncertainty in corrective action”. In
our data, failures caused by Bohrbugs for which the
cause is known and the corrective action is certain are
clearly overrepresented; likewise, among failures
caused by non-aging-related Mandelbugs, those for
which either the cause is unknown or the corrective
action is uncertain are highly overrepresented. The
statistical significance of this relationship can be
shown via a chi-square independence test of the null
hypothesis “fault type and failure risk are independent”
against the alternative hypothesis that they are linked.
The value of the chi-square statistic obtained is 64.03,
implying a p-value of 6.8e-12. The null hypothesis can
thus be rejected at any common error level. While this
result might have been expected due to the fault type
definitions, it is surprising that the dependence is that
significant: As pointed out earlier, JPL/NASA engi-
neers are often able to reproduce failure caused by
Mandelbugs due to the wealth of system parameters
recorded. Although the logged information should also
help them to identify the causes of such failures, this
does not seem to be the case in general.

4.2. Fault type proportions vs. launch order

While space missions vary in their duration, system
size, and fault density of the software, the fault type
proportions might be similar across missions. We in-
vestigate this conjecture in this section. 44 of the
unique faults extracted from JPL’s Problem Reporting
System were discovered after deployment of the space
system from the developing facility, but before launch.
Since the types of faults causing failures during normal
operation could differ from the kinds of faults discov-
ered in earlier phases, we drop these 44 faults for the
following analyses, focusing on the unique faults de-
tected after launch.

Moreover, for 10 of the 18 missions considered so
far the number of unique software faults discovered is

In Proc. 40th IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447–456, 2010. © IEEE. 451

very small: The combined number of unique faults
detected for these 10 missions amounts to 39, averag-
ing to a mere 3.9 faults per mission. Clearly, for these
missions the fault type proportions are unlikely to have
stabilized. Our examination of fault type proportions
within missions is therefore based on the remaining
eight missions. These missions are summarized in Ta-
ble I. The smallest number of unique faults available
for any of these missions is 23; the total number of
unique faults that our analysis is based on is 437.

For each mission the first column provides a unique
numerical identifier corresponding to launch order; i.e.,
mission ID 1 was the first mission launched. The sec-
ond column represents the operational mission duration
covered in our data. For historic missions, this duration
is the period between launch and the end-of-mission;
for current missions, it is the period between launch
and the date on which the information was gathered
from JPL’s Problem Reporting System. Showing the
durations in days would provide clues helping to iden-
tify the missions. In order to maintain mission anonym-
ity, all durations have therefore been normalized in
terms of the duration of the longest-running mission
(mission ID 1). Of course this normalization does not
change the relative length of missions: For example, a
mission that lasted half as many days as mission ID 1
would be assigned a duration of 0.5. The remaining
four columns represent the proportions of Bohrbugs,
non-aging-related Mandelbugs, aging-related bugs, and
faults of unknown type detected in the flight software
of the respective mission after launch.

The last two rows of Table I list the (unweighted)
average fault type proportions, as well as the standard
deviations of the individual fault type proportions ob-
served. Parts of the variation might be explained by the
time at which the space systems were developed,
launched and operated. Figure 1, in which the missions
are arranged in launch order, shows how the fault type
proportions changed across missions.

Table I. Mission IDs, normalized durations and fault type
proportions for the eight missions with the largest num-

ber of unique faults

Obviously, for three of the four most recent missions
(IDs 5, 7, and 8) the proportion of Bohrbugs is larger
than for any of the first four missions. Besides the cor-
responding decrease in the proportion of all Mandel-
bugs, we can also see that especially the proportion of
aging-related bugs seems to be lower for the later mis-
sions. These findings could suggest the following con-
clusions, which are not mutually exclusive:

• In more recent development projects, the propor-
tion of residual software faults that are Bohrbugs is
larger than for earlier missions. There are two pos-
sible explanations:
o The development process for recent missions

has changed so that a higher proportion of the
faults created are Bohrbugs.

o Alternatively, for more recent missions, fault
detection and removal techniques have become
more effective at reducing the number of Man-
delbugs remaining in the system at launch time.

• For the more recent space missions, the operational
environment is better controlled. Non-aging-related
Mandelbugs and aging-related bugs for which a
failure occurrence requires specific and unusual en-
vironmental conditions are now underrepresented
among the detected faults.

One might also think that the more recent missions
(but not the older ones) employ techniques like soft-
ware replication or software rejuvenation, masking
existing non-aging-related Mandelbugs and aging-
related bugs. However, within the missions analyzed
there appear to be no significant differences in the
fault-tolerance strategies used. Such masking effects
are thus unlikely to be the cause of our findings.

Figure 1. Fault type proportions for the eight missions
with the largest number of unique faults

ID
Normalized

duration
Fault type proportions

BOH NAM ARB UNK
1 1.000 0.595 0.270 0.135 0.000
2 0.911 0.571 0.379 0.043 0.007
3 0.657 0.481 0.481 0.000 0.037
4 0.582 0.554 0.369 0.062 0.015
5 0.292 0.810 0.143 0.048 0.000
6 0.376 0.522 0.435 0.000 0.043
7 0.226 0.815 0.130 0.019 0.037
8 0.171 0.643 0.343 0.014 0.000

Avg. proportions 0.635 0.307 0.038 0.020
Standard deviations 0.114 0.112 0.042 0.017

1 2 3 4 5 6 7 8

Mission ID

F
au

lt
ty

pe
 p

ro
po

rt
io

ns

unknown
aging-related bugs
non-aging-related Mandelbugs
Bohrbugs

0.
00

0.
25

0.
50

0.
75

1.
00

In Proc. 40th IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447–456, 2010. © IEEE. 452

There is yet another possibility: The findings might
be an artifact of the analysis. As they were launched
later, the duration covered by the data tends to be
shorter for the more recent missions as opposed to the
earlier missions, some of which are still ongoing. Since
one may conjecture that the proportion of failures
caused by aging-related bugs increases with mission
duration (after all, it is the nature of these faults to
manifest themselves at a higher rate after longer peri-
ods of continuous operation), the observed differences
in the fault type proportions could simply be driven by
the different mission runtimes.

4.3. Fault type proportions vs. mission run-

times

To investigate the conjecture formulated at the end
of the last section, we now study how the fault type
proportions evolve within missions over their runtimes.

Figure 2 compares the development of the propor-
tion of Bohrbugs for the four earlier missions. All run-
times are again normalized by the total duration of
mission ID 1; for this mission, information on the fault
type proportions is therefore available up to a normal-
ized runtime of 1.0 (or 100%). For each mission, the
proportion of Bohrbugs is updated whenever a new
fault is discovered in the flight software of that mis-
sion. For example, after a runtime in days that corre-
sponds to around 19 percent of the total duration of
mission ID 1, the proportion of Bohrbugs for that mis-
sion drops first to 83% and a very short time later to
71%. After the same number of days since launch, the
proportion of Bohrbugs among the faults detected in
the software of mission ID 3 is 39%. The number of
days for which this mission is covered in our data is
about 66% of the duration of mission ID 1; therefore,
the line related to mission ID 3 breaks off at an x-
coordinate of 0.66.

Figure 2 does not indicate that within one mission
the proportion of Bohrbugs usually decreases mono-
tonically over the mission runtime. However, it does
show that as a mission progresses and more and more
faults are discovered there tends to be less and less
fluctuation in the proportion of Bohrbugs within a mis-
sion. What is more, across missions the proportions
seem to stabilize around almost the same value after a
similar number of days since launch. After a mission
runtime that corresponds to 40 percent of the duration
of mission ID 1, for all missions the proportion of
Bohrbugs lies in the interval (35%, 65%); after a nor-
malized runtime of 0.55, the lower bound of this inter-
val has further risen to 45%. At a normalized runtime
of 0.75, the proportion of Bohrbugs has stabilized at a
value around 58% for the two missions for which data
are still available.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized mission runtime

P
ro

po
rt

io
n

of
 B

oh
rb

ug
s

Mission ID 1
Mission ID 2
Mission ID 3
Mission ID 4

Figure 2. Proportion of Bohrbugs for missions ID 1 to 4

These findings suggest that for the earlier four of our

eight missions, the fraction of Bohrbugs among all
faults contained in the software at launch time may
indeed have been very similar.

It is not surprising that this might be the case: The
types of systems developed were similar to each other
in terms of complexity and functionality. Although a
significant effort was undertaken to improve software
process maturity over the years, the development proc-
esses themselves as defined by the project software
management plans were similar to each other, and the
institutional standards governing software development
did not change significantly. Moreover, many of the
developers worked on more than one of these projects.

The variation in the proportion of Bohrbugs among
the detected faults across these missions (see Table I)
could thus be explained by the differences in the mis-
sion runtimes covered by the data. To check this sur-
mise, we extract information on how the proportion of
Bohrbugs develops over time for the earlier four pro-
jects in the form of 95% confidence intervals; these
intervals can then be compared with the available data
for the four later missions, to study whether or not they
are substantially different from the earlier ones.

For each of 100 evenly-spaced normalized mission
runtimes ti (i = 1, …, 100) between zero and one, we
collect Bi, the set of current Bohrbug proportions for
those missions (among missions ID 1 to 4) whose nor-
malized duration is greater than or equal to ti. We de-
note the cardinality of the set Bi by ki. (For example,
for the normalized runtime ti = 0.4, observations are
still available for all ki = 4 missions, with the current
set of Bohrbug proportions Bi = {0.417, 0.455, 0.576,
0.605}; after a normalized runtime of ti = 0.6, only
ki = 3 missions provide information about the current

In Proc. 40th IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447–456, 2010. © IEEE. 453

proportion of Bohrbugs, and Bi = {0.440, 0.458,
0.595}.) The bounds of a 95% confidence interval for
the proportion of Bohrbugs at ti can only be determined
if ki is larger than one. To this end, a bootstrapping-
type algorithm is then employed.

Bootstrapping is a data-based simulation approach
accounting for the fact that in inferential statistics the k
observations available are a random sample from a
(possibly infinite) sample space [5]. To evaluate vari-
ability, bootstrapping produces many samples of size k,
each time drawing from the k observations without
replacement, and calculates the statistics of interest
(e.g., the sample mean) for all of these samples.

Since the number of observations in Bi is always
small, our bootstrapping-type algorithm does not have
to rely on sampling. Instead, it directly creates all pos-
sible combinations of ki values chosen from Bi with
replacement. Then a distribution is fitted to each of

these ni = ik
ik combinations Cij (j = 1, …, ni):

• If all values in Cij are identical, then the fitted dis-
tribution is a singular distribution at this value.

• Otherwise, a beta distribution is fitted to the values
in Cij. Due to its flexible shape and the fact that its
domain is restricted to the interval from zero and
one, the beta distribution is often used to model
fractions. However, since the end-points of the in-
terval are not included in the domain, values of zero
and one contained in Cij (which may especially be
observed for short mission runtimes) are replaced
by values slightly larger than zero and less than
one, respectively.

To derive the 95% confidence interval for the Bohrbug
proportion at normalized mission runtime ti, we then
sample 2000 values from the mixed distribution in
which each of the ni fitted distributions is given weight
1/ni. The lower (upper) bound of the confidence inter-
val is the lower (upper) empirical 2.5% quantile of the
2000 values sampled.

We implemented this bootstrapping-type approach
for analyzing the data in the programming language
provided by the statistics software R [18]. Figure 3 and
Figure 4 show the 95% confidence interval for the pro-
portion of Bohrbugs as dotted lines. The growing stabi-
lization with mission runtime – already observed in
Figure 2 – is reflected in the decreasing width of the
confidence interval (i.e., the difference between its
upper and lower bounds tends to get smaller). For
normalized runtimes larger than 0.582, parts of this
decline can be attributed to the fact that the calcula-
tions are based on a smaller number of missions. How-
ever, even for shorter mission runtimes the reduction in
variability is clearly noticeable.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized mission runtime

P
ro

po
rt

io
n

of
 B

oh
rb

ug
s

95% confidence interval
Mission ID 5
Mission ID 6

Figure 3. Proportion of Bohrbugs for missions ID 5 and 6,
and 95% confidence interval based on missions ID 1 to 4

Figure 3 and Figure 4 also compare the confidence

interval established for the four earlier missions with
the development of the Bohrbug proportions for the
four later ones. Table I and Figure 1 showed that for
three of the later missions the Bohrbug proportion is
higher than for the earlier missions. We now see from
Figure 3 and Figure 4 that for mission ID 8 the differ-
ence in the Bohrbug proportion could be explained by
the fact that at short mission runtimes the fault type
proportions have not yet stabilized as much as after
longer runtimes. However, for missions ID 5 and 7
several observations lie outside the 95% confidence
interval, suggesting that there may indeed be a differ-
ence between the first four and these later missions.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized mission runtime

P
ro

po
rt

io
n

of
 B

oh
rb

ug
s

95% confidence interval
Mission ID 7
Mission ID 8

Figure 4. Proportion of Bohrbugs for missions ID 7 and 8,
and 95% confidence interval based on missions ID 1 to 4

In Proc. 40th IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447–456, 2010. © IEEE. 454

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized mission runtime

P
ro

po
rt

io
n

of
 n

on
-a

gi
ng

-r
el

at
ed

 M
an

de
lb

ug
s

Mission ID 1
Mission ID 2
Mission ID 3
Mission ID 4

Figure 5. Proportion of non-aging-related Mandelbugs for

missions ID 1 to 4

Since each software fault is either a Bohrbug or a

Mandelbug, the results presented for Bohrbugs analo-
gously apply to the category of all Mandelbugs. Spe-
cifically, the evidence suggests that the fraction of ini-
tial faults that are Mandelbugs may be smaller for mis-
sions ID 5 and 7 than for the first four missions ana-
lyzed.

However, this does not necessarily mean that these
findings also apply to the two sub-types of Mandel-
bugs. The same analyses were therefore also carried
out for the proportions of non-aging-related Mandel-
bugs. The results are shown in Figure 5 to Figure 7.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized mission runtime

P
ro

po
rt

io
n

of
 n

on
-a

gi
ng

-r
el

at
ed

 M
an

de
lb

ug
s

95% confidence interval
Mission ID 5
Mission ID 6

Figure 6. Proportion of non-aging-related Mandelbugs for
missions ID 5 and 6, and 95% confidence interval based

on missions ID 1 to 4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized mission runtime

P
ro

po
rt

io
n

of
 n

on
-a

gi
ng

-r
el

at
ed

 M
an

de
lb

ug
s

95% confidence interval
Mission ID 7
Mission ID 8

Figure 7. Proportion of non-aging-related Mandelbugs for
missions ID 7 and 8, and 95% confidence interval based

on missions ID 1 to 4

The data depicted in Figure 5 indicate that for the

four earlier missions the variability in the proportion of
non-aging-related Mandelbugs tends to get less with
increasing mission duration, although it is not clear
whether the proportions will in the end settle to very
similar values. Corresponding with this behavior is
again a decreasing trend in the widths of the 95% con-
fidence interval derived with the bootstrapping-type
algorithm, as can be seen in Figure 6 and Figure 7.

Again, it is missions ID 5 and 7 for which some of
the proportions of non-aging-related Mandelbugs lie
outside the 95% confidence interval derived for the
earlier missions. This could mean that for these mis-
sions the fraction of non-aging-related Mandelbugs
among all initial software faults is lower than for the
first four missions.

Of course, different initial fault type proportions are
not the only possible explanation for the higher (lower)
proportions of Bohrbugs (non-aging-related Mandel-
bugs) observed for missions ID 5 and 7. Instead, these
initial proportions could be similar, but the stabiliza-
tion might occur later than for the earlier missions.
This might for example happen if the intended mission
duration is longer for the later missions, because non-
aging-related Mandelbugs can be expected to show
themselves at a higher rate once operational constraints
are relaxed after a mission’s primary goals have been
achieved.

We finally analyzed the proportions of aging-related
bugs; however, additional figures are omitted due to
space constraints. The proportions of aging-related
bugs initially observed during the four earlier missions
showed less overall variability than the proportions of
the other fault types. Moreover, the proportions stabi-

In Proc. 40th IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447–456, 2010. © IEEE. 455

lize to a lesser extent as mission runtime increases; no
clear trend is discernible for the widths of the 95%
confidence intervals determined with the bootstrap-
ping-type algorithm. Comparing the proportions of
aging-related bugs for the four later missions with the
95% confidence intervals based on the four earlier mis-
sions, we could not find any clear differences.

5. Discussion

We have analyzed software anomaly reports for 18 JPL
robotic exploration space missions to study the de-
pendencies between the fault type and further charac-
teristics like failure effect, and failure risk; the propor-
tions of Bohrbugs, non-aging-related Mandelbugs, and
aging-related bugs among all software faults detected;
changes in these proportions in the course of a mission;
and variations in the fault type proportions across mis-
sions. Our findings are as follows:

1. Although the wealth of system parameters logged

enables engineers at JPL/NASA to reproduce many
of the failures caused by Mandelbugs, there is a
highly significant relationship between the fault
type and the failure risk: For failures due to Man-
delbugs the cause is often questionable or not un-
derstood. However, at an error level of 1%, the hy-
potheses that fault type and criticality as well as
fault type and failure effect are independent could
not be rejected.

2. Among the 520 software faults detected in all 18
missions after deployment of the space system from
the developing facility, 61.4% were Bohrbugs, and
36.5% were Mandelbugs; this latter number in-
cludes those 4.4% of all software faults that were
aging-related bugs. While these proportions high-
light the importance of Mandelbugs, they also seem
to indicate that additional testing and technical re-
view prior to deployment of the space system from
the developing facility could further reduce the
number of Bohrbugs found later. Detailed analyses
of testing effort and defect repair times will be re-
quired to develop more effective strategies.

3. The widths of the confidence intervals for the pro-
portions of Bohrbugs and non-aging-related Man-
delbugs calculated based on four early missions
showed decreasing trends. This suggests that after
long mission durations the proportions of Bohr-
bugs/non-aging-related Mandelbugs among the de-
tected faults are similar across missions. A possible
explanation is that at launch time, after completion
of the testing phase, the proportion of Bohrbugs
among the residual flight software faults is similar
for these four missions; the same applies to the ini-
tial proportion of non-aging-related Mandelbugs.

4. The decreasing widths of the confidence intervals
also imply that much of the variation in the fault
type proportions of the four early missions seen in
Table I can be explained by the fact that for short-
running missions with a low absolute number of
faults detected the fault type proportions have not
yet stabilized. This may also be the case for the
four more recent missions analyzed, although there
is some evidence that the flight software of earlier
missions contained a smaller proportion of Bohr-
bugs and a higher proportion of Mandelbugs.

These findings will be able to provide guidance in the
fault detection, identification, and recovery (FDIR)
techniques implemented in space mission systems, as
well as guidance in the verification strategies to be
used during development. For example, since Mandel-
bugs are difficult to detect and remove during software
testing, the rather large proportion of Mandelbugs
among the residual faults at launch time indicates the
potential benefit of employing verification techniques
such as model checking and theorem proving in addi-
tion to dynamic testing. A significant proportion of the
Mandelbugs we found are related to the effects of in-
struction ordering in multi-threaded systems (e.g., race
conditions, deadlocks). Techniques such as model
checking were developed to find these types of defects;
for instance, the SPIN model checker [14] was devel-
oped specifically to find timing-related faults in te-
lephony protocols. These faults can be very difficult to
find by testing because (i) testers will usually not be
able to control the order in which instructions are exe-
cuted for the system under test, and (ii) the computa-
tional state space is almost always too large to test all
of the possible execution orderings, even if the tester
did have sufficiently detailed control.

Our analyses are based on those anomalies classified
as related to flight software according to the “Cause”
field. Recent work by Green et al. [9] as part of the UR
Program indicates that in the JPL Problem Reporting
System the number of software-related anomalies may
be significantly undercounted. Green et al. analyzed in
detail approximately 1300 anomalies of all types be-
tween launch and orbit insertion for seven Mars mis-
sions. These anomalies were categorized according to
type (e.g., flight software, flight hardware) not by ex-
amination of the “Cause” field of the anomaly report,
but by a detailed reading of the text describing the
anomalous behavior, the analysis conducted to deter-
mine the cause, and the final corrective action. Because
many of the anomaly reports that were analyzed for
Green’s UR task form a subset of the anomaly reports
that we analyzed, any of Green’s results that may af-
fect the validity of our work should be considered.

In Proc. 40th IEEE/IFIP International Conference on Dependable Systems and Networks, pages 447–456, 2010. © IEEE. 456

Of particular interest is the finding by Green et al.
that the number of flight software anomalies identified
by reading the descriptive text of the anomaly reports
was approximately six times the number of flight soft-
ware anomalies identified by the anomaly reports’
“Cause” field. This indicates that the number of soft-
ware anomalies may be significantly underreported in
the JPL Problem Reporting System.

We studied additional anomalies that were not part
of the original analysis to determine the effect of this
finding on our results. From the Mars missions ana-
lyzed by Green et al. [9], we identified 62 flight soft-
ware anomalies that had been labelled as other types of
anomaly (e.g., flight hardware, procedural) in the
“Cause” field and classified them according to our cri-
teria. The proportions of the types BOH, NAM, ARB
and UNK for these additional anomalies were 0.694,
0.258, 0.016, and 0.032. By way of comparison, the
global proportions of the fault types BOH, NAM, ARB
and UNK reported at the beginning of Section 4.1 were
0.614, 0.321, 0.044 and 0.021. Although for the addi-
tional anomalies the proportion of Bohrbugs was
higher and the proportion of Mandelbugs was some-
what lower, the proportions are similar. The somewhat
higher proportion of Bohrbugs and lower proportion of
Mandelbugs may be explained by the fact that all of
the additional anomalies discussed by Green et al. [9]
were observed during the cruise phase between launch
and planetary orbit insertion, a period during which
less activity takes place and which is better controlled
and understood. This could allow fewer opportunities
for conditions enabling Mandelbugs to manifest them-
selves to arise. Of course, the relatively small sample
size prevents this additional analysis from being con-
clusive. It does, however, affirm the viability of the
hypothesis that a future analysis of additional “true”
flight software anomalies will not substantially change
the results reported in this paper.

6. Future work

In our ongoing project, we are continuing the analy-
sis of the anomaly reports collected from the JPL Prob-
lem Reporting System. We are currently analyzing the
anomaly reports for ground-based mission support
software systems.

Our goal is to use the project results as the basis for
recommending more effective fault identification, re-
moval, and mitigation techniques for future robotic
space mission software. The findings reported in this
paper are a first step, since they provide us with evi-
dence for the relative importance of the different fault
types for space mission system software.

Acknowledgments

The work described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology, and was sponsored by the National Aero-
nautics and Space Administration’s Office of Safety
and Mission Assurance Software Assurance Research
Program. This task is managed locally by JPL’s Assur-
ance Technology Program Office.

References

[1] E. N. Adams, Optimizing preventive service of software prod-
ucts, IBM Journal of Res. & Development 28(1):2–14, 1984.

[2] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic
concepts and taxonomy of dependable and secure computing,
IEEE Transactions on Dependable and Secure Computing
1(1):11–33, 2004.

[3] G. Candea, J. Cutler, and A. Fox, Improving availability with
recursive microreboots: a soft-state system case study, Per-
formance Evaluation 56(1-4):213–248, 2004.

[4] R. Chillarege. Orthogonal Defect Classification, in M. R. Lyu,
editor, Handbook of Software Reliability Engineering.
McGraw-Hill, New York, 1995.

[5] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap.
Chapman & Hall, New York, 1993.

[6] J. Gray, Why do computers stop and what can be done about it?
in Proc. Fifth Symposium on Reliability in Distributed Systems,
1986, pp. 3–12.

[7] J. Gray and D. P. Siewiorek, High-availability computer sys-
tems, IEEE Computer 24(9):39–48, 1991.

[8] N. W. Green, A. R. Hoffman, and H. B. Garrett, Anomaly
trends for long-life robotic spacecraft, Journal of Spacecraft
and Rockets 43(1):218–224, 2006.

[9] N. W. Green, A. R. Hoffman, T. K. M. Schow, and H. B.
Garrett, Anomaly trends for robotic missions to Mars: Implica-
tions for mission reliability, AIAA 2006-269, in Proc. 44th
AIAA Aerospace Sciences Meeting and Exhibit, 2006, pp. 1–9.

[10] M. Grottke and K. S. Trivedi, Software faults, software aging
and software rejuvenation, Journal of the Reliability Engineer-
ing Association of Japan 27(7):425–438, 2005.

[11] M. Grottke and K. S. Trivedi, A classification of software
faults, in Supplemental Proc. Sixteenth International Sympo-
sium on Software Reliability Engineering, 2005, pp. 4.19-4.20.

[12] M. Grottke and K. S. Trivedi, Fighting bugs: Remove, retry, re-
plicate, and rejuvenate, IEEE Computer 40(2): 107–109, 2007.

[13] A. R. Hoffman, N. W. Green, and H. B. Garrett, Assessment of
in-flight anomalies of long life outer planet missions, in Proc.
European Space Agency 5th International Symposium on Envi-
ronmental Testing for Space Programmes, 2004, pp. 43–50.

[14] G. J. Holzmann, The SPIN Model Checker: Primer and Refer-
ence Manual, Addison-Wesley, Boston, 2003.

[15] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, Software
rejuvenation: Analysis, module and applications, in Proc.
Twenty-fifth International Symposium on Fault-Tolerant Com-
puting, 1995, pp. 381–390.

[16] I. Lee and R. K. Iyer, Software dependability in the Tandem
GUARDIAN system, IEEE Trans. Software Engineering
21(5):455–467, 1995.

[17] P. Newbold, Statistics for Business and Economics. Third
edition. Prentice-Hall, Englewood Cliffs, 1991.

[18] R Development Core Team. R: A Language and Environment
for Statistical Computing. Reference index, v. 2.10.1, R Foun-
dation for Statistical Computing, Vienna, Austria, 2009.

[19] E. S. Raymond, The New Hacker’s Dictionary. MIT Press,
Cambridge, 1991.

