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Analysis of Software Aging in a Web Server
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Abstract—Several recent studies have reported & examined
the phenomenon that long-running software systems show an
increasing failure rate and/or a progressive degradation of their
performance. Causes of this phenomenon, which has been re-
ferred to as ‘“‘software aging”, are the accumulation of internal
error conditions, and the depletion of operating system resources.
A proactive technique called “software rejuvenation” has been
proposed as a way to counteract software aging. It involves occa-
sionally terminating the software application, cleaning its internal
state and/or its environment, and then restarting it. Due to the
costs incurred by software rejuvenation, an important question
is when to schedule this action. While periodic rejuvenation at
constant time intervals is straightforward to implement, it may not
yield the best results. The rate at which software ages is usually
not constant, but it depends on the time-varying system workload.
Software rejuvenation should therefore be planned & initiated in
the face of the actual system behavior. This requires the measure-
ment, analysis, and prediction of system resource usage.

In this paper, we study the development of resource usage in a
web server while subjecting it to an artificial workload. We first
collect data on several system resource usage & activity parame-
ters. Non-parametric statistical methods are then applied toward
detecting & estimating trends in the data sets. Finally, we fit time
series models to the data collected. Unlike the models used previ-
ously in the research on software aging, these time series models
allow for seasonal patterns, and we show how the exploitation of the
seasonal variation can help in adequately predicting the future re-
source usage. Based on the models employed here, proactive man-
agement techniques like software rejuvenation triggered by actual
measurements can be built.

Index Terms—Apache web server, Linux, non-parametric trend
analysis, performance monitoring, prediction of resource utiliza-
tion, software aging, software rejuvenation, time series analysis.
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I'The singular and plural of an acronym are always spelled the same.

NOTATION
gilb(-) greatest integer lower bound
sgn(-)  signum function
Var(-) Variance (square of standard deviation)
s- implies: statistical(ly)
Ap 100p% quantile of the standard s-normal distribution
™ n!/(n — r)!lr!: binomial coefficient

1. INTRODUCTION

T has now been well-established that failures of computer
I systems are more often due to software faults than due to
hardware faults [19], [35]. While there are many tools and tech-
niques for supporting software developers and testers, it is prac-
tically impossible to guarantee that software products do not
contain any residual faults at the time of their release.

There are two main approaches to coping with the unavoid-
able presence of software faults. On the one hand, one can
strive for efficient ways of recovering the software system after
a failure has occurred, e.g. via fine-grained “microreboots” [7]
of only the affected application components.

On the other hand, if the failure rate of software should
be increasing, it can be worthwhile to implement some sort
of preventive maintenance. Indeed, researchers have recently
reported the fact that software applications executing continu-
ously for a long period of time show a degraded performance
and/or an increased occurrence rate of hang/crash failures.
This phenomenon has been called “software aging” [14].
Some common causes of software aging are memory leaks,
unreleased file-locks, and round-off errors. Huang et al. [24]
proposed the technique of software rejuvenation in order to
counteract this phenomenon. It involves occasionally stopping
the software application, cleaning its internal state and/or its
environment, and then restarting it. By removing the accrued
error conditions and freeing up or defragmenting operating
system (OS) resources, this technique proactively prevents
unexpected future system outages. Unlike downtime caused
by sudden failure occurrences, the downtime related to soft-
ware rejuvenation can be scheduled at the discretion of the
user/administrator, e.g., in the middle of the night. Meanwhile,
rejuvenation has been implemented in various types of systems,
like billing data collection systems [24], telecommunication
systems [5], transaction processing systems [8], cluster servers
[9], and spacecraft systems [36]. For recent introductions to
software rejuvenation, see [6], and [21]. Many research papers
on this topic can be found at [10].

In the face of an accumulation of errors and an increasing
failure rate on the one hand, and the direct and indirect costs of
rejuvenating a software system on the other hand, an optimal
timing of software rejuvenation should be sought.
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Approaches used for analysing and solving this optimization
problem can be grouped into model-based ones, and measure-
ment-based ones.

The model-based approaches are aimed at building analytic
models of system degradation, and solving these models for de-
termining the effectiveness of software rejuvenation as well as
for deriving optimal rejuvenation schedules.

A simple degradation model was introduced by Huang et al.
[24], who assumed that once a software system switches to the
failure probable state, the time until rejuvenation is carried out
follows an exponential distribution. To deal with periodic reju-
venation, and deterministic intervals between successive reju-
venations, Garg et al. [15] applied a Markov regenerative Petri
net model. For analysing two rejuvenation policies (purely time
based vs. instantancous load & time based) in a transactions
based software system, Garg et al. [16] used a queuing model.
Dohi et al. [11]-[13] formulated software rejuvenation models
as semi-Markov reward processes, which do not depend on spe-
cific failure-time distributions. All models mentioned so far only
dealt with single-level rejuvenation, i.e. one kind of rejuvenation
(usually full system restart). Vaidyanathan et al. [37] considered
two kinds of preventive maintenance in operational software
systems. Likewise, Xie et al. [40] generalized the semi-Markov
model presented in [13] by introducing the possibility of ser-
vice-level rejuvenation in addition to system-level rejuvenation.

The basic idea of measurement-based approaches is to
directly monitor attributes subject to software aging. For ex-
ample, in a system with memory leaks, not all of the memory
allocated to a task is necessarily released after its completion,
leading to an increasing trend in memory usage. Based on
periodically collected data, measurement-based approaches
try to assess the current “health” of the software system, and
to obtain predictions about possible impending failures due to
resource exhaustion.

Garg et al. [17] analysed the exhaustion of resources like real
memory, and swap space in a network of UNIX workstations.
All those metrics, observed on three computers, showed s-sig-
nificant trends over time. Using a non-parametric technique,
Garg et al. determined the global trends, and calculated the es-
timated time to exhaustion via linear extrapolation for each re-
source. Vaidyanathan and Trivedi [38] took into account the pos-
sibly differing rates of resource depletion over time by identi-
fying eight states of system workload, and they determined an
individual trend for each of them. Modeling the workload states
as a semi-Markov chain, they were able to calculate the expected
development of resource exhaustion. However, their predictions
were again linear functions of time. Castelli ez al. [9] examined
software aging in a cluster of servers. For the prediction of re-
source exhaustion, they fitted a (piecewise) linear trend to the
measurements taken within a fitting window, or to the logarithm
of these measurements.

None of these previous measurement-based approaches ex-
plicitly models seasonal patterns occurring in the measurement
data. The predictions of future resource usage (or its logarithm)
are linear functions of time.

Shereshevsky et al. [34] chose a completely different ap-
proach to the analysis of aging in memory resources. Instead
of modeling and predicting memory utilization directly, they
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monitored the Holder exponent (a measure of the local rate of
fractality) of the system parameters. Their findings indicated
that system crashes are often preceded by the second abrupt
increase in this measure.

In this paper, we analyse resource usage data collected on a
typical long-running software system: a web server. Ideally, a
web server should operate without any interruptions. However,
due to unfixed bugs in the application or the OS, the system may
show software aging. Some system administrators deal with
this problem in a reactive manner, restarting the web server
only after it has crashed or slowed down so much that it has
become unusable. Many administrators proactively reboot the
whole system or restart the web server program from time to
time, setting the interval between restarts based on their expe-
rience. Because the downtime of business-critical web services
like online sales directly translates into financial losses, a better
understanding of web server aging leading to a more appropriate
scheduling of software rejuvenation is crucial.

The main contribution of this paper is the detailed examina-
tion of the development of response time and memory usage of
an Apache web server subjected to a synthetic load for 25 days.
Our analyses reveal the influence of settings related to both the
Linux OS, as well as Apache itself on the aging phenomenon.
Unlike previous research in which the predictions of resource
usage were linear functions of time even in the presence of sea-
sonality, we parsimoniously model the existing seasonal pattern,
and exploit it for forecasting the future behavior.

The rest of the paper is organized as follows: In Section II,
we discuss the experimental setup as well as the experiments
carried out in our study, and describe the data sets collected. The
resource usage data is then statistically analysed in Section III.
Section I'V contains concluding remarks, and discusses possible
directions for future research.

Fig. 1. Experimental setup.

II. EXPERIMENTS

A. Experimental Setup

Apache is currently the most popular web server software
[30]. The setup used for our experiments consists of a server
running Apache version 1.3.14 on a Linux platform, and a client
connected via an Ethernet local area network. The components
and the structure of this experimental setup are illustrated in
Fig. 1. For collecting resource usage information of the web
server, we make use of the fact that the Linux OS stores an abun-
dance of system information in the /proc virtual file system.
For example, the file /proc/meminfo contains information
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about the usage of physical memory and swap space, while in-
formation on the system load can be found in the file /proc/
loadavg. From the /proc file system, we periodically ex-
tract information with the help of the Linux monitoring tool
procmon developed in our research group by Rajiv Poona-
malli. The parameters to be monitored, the interval at which
procmon extracts their current values, and the format of the
ASCII file in which procmon stores all data can easily be spec-
ified in a configuration file.

In our experiments, we use httperf [29] to generate re-
quests with constant time intervals between two requests. Each
request accesses one of five specified files of sizes 500 bytes,
5kB, 50kB, 500 kB, and 5 MB on the server. The corresponding
probabilities of accessing the files are 0.35, 0.5, 0.14, 0.009, and
0.001, respectively. ht tperf is not only a workload generator,
but it can also be employed for monitoring performance infor-
mation. The measurements provided include the reply rate (i.e.,
the number of responses received from the server per unit time),
the response time (i.e., the interval from the time httperf
sends out the first byte of a request until it receives the first byte
of reply), and the number of timeout errors (i.e., the total number
of requests for which no response was received from the server
due to timeout errors). While the reply rate is a fundamental
index of capacity; response time and timeout error rate (i.e., the
number of timeout errors that occurred during the experiment
per unit time) are important performance indicators of the web
server.

B. Determining the Capacity of the Web Server

With the first experiment, we determine the capacity of our
Apache web server. Toward this end, we observe its reply rate,
and timeout error rate, while increasing the connection rate
of requests generated by httperf until the web server is
overloaded.

It should be clear that the web server capacity depends
on its configuration. We study the influence of two param-
eters with which Apache provides some features similar to
software rejuvenation. First, if the configuration variable
MaxRequestsPerChild is set to a positive value, then the
parent process of Apache kills a child process as soon as this
child process has handled MaxRequestsPerChild requests.
This behavior may be beneficial because “it limits the amount
of memory that [one] process can consume by (accidental)
memory leakage,” and “helps reduce the number of processes
when the server load reduces” [2]. If MaxRequestsPerChild
is set to its default value zero, then a process never expires; i.e.,
this value really represents infinity.

A second parameter, MaxClients, determines the number of
child processes that can be running concurrently; i.e., it sets a
limit on the number of clients that can simultaneously connect
to the server. It makes sure that an overloaded Apache server
does not create more child processes to serve requests, which
would slow down and eventually completely overload the entire
system. The default value of this parameter is 256 [2]. This is
also the maximum value that can be chosen without changing
the source code, and recompiling the Apache server, because
in the Apache 1.3.14 distribution the compile-time constant
HARD_SERVER_LIMIT, which acts as an upper bound for
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Fig. 2. Capacity of the web server.

TABLE I
WEB SERVER CAPACITY UNDER DIFFERENT CONFIGURATIONS

MaxClients — || 250 | 100 | 50 | 30
MaxRequestsPerChild !

0 () 390 | 390 | 390 | 380

3000 390 | 390 | 390 | 380

1000 390 | 390 | 390 | 380

750 390 | 390 | 390 | 380

500 380 | 380 | 380 | 380

250 370 | 370 | 370 | 360

MaxClients, is set to 256 [1]. This constant limits the amount
of (shared) memory that has to be reserved for several static
data structures.

To assess the impact of MaxRequestsPerChild &
MaxClients (within the pre-defined hard limit), we deter-
mine the capacity of the web server for different settings
of the two configuration parameters, always using multiples
of ten. For example, Fig. 2 depicts the results obtained for
MaxRequestsPerChild = 0, and MaxClients = 250. Above
the peak at 390 replies per second, the reply rate deviates from
the connection rate. We therefore conclude that under this
setting the capacity of the web server is about 390 requests per
second. The results shown in Table I indicate that decreasing
either MaxClients or MaxRequestsPerChild will eventually
have adverse effects on the web server capacity.

The explanation of this behavior with respect to the former
parameter is as follows: If MaxRequestsPerChild is set to a
smaller value, then the number of requests processed by each
child process quickly attains this maximum value even for a
lower workload. As a consequence, the Apache parent process
has to kill, and then respawn child processes with a higher fre-
quency, which increases the overhead on the system. Therefore,
the capacity of the web server decreases. This finding agrees
with the results obtained by Arlitt & Williamson [4]. Their
experiments revealed that restricting the number of requests per
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child process can considerably decrease the reply rate achieved
by the Apache web server. The authors therefore concluded that
the configuration parameter MaxRequestsPerChild should
only be changed to a non-zero value if absolutely necessary.
Recall that a zero value corresponds to no limit on the number
of requests processed by a child process.

If the second parameter, MaxClients, is set to a small value,
then only a small number of clients can connect simultaneously,
and the possibility of dropping a request becomes larger. More-
over, the processing rate of each child process needs to be in-
creased to handle the workload, which results in a higher fre-
quency of killing & respawning child processes. Both effects
lead to a lower server capacity.

During the following analyses, we set MaxRequestsPerChild
to 0, and MaxClients to 250.

C. Collection of Resource Usage Data

For collecting resource usage data over a long time period,
we employ a shell program to run httperf periodically. As
the connection rate, we choose a value of 400 requests per
second, which puts the web server in an overload state, and
should speed up software aging. Among the system parameters
of the web server monitored during a period of more than 3.5
weeks are the response time of the web server (ResponseTime),
the free physical memory (FreePhysMem), and the used swap
space (UsedSwapSpace). The three time series are shown in
Figs. 3 to 5. Because the spacing between two consecutive
data points is five minutes, each time series consists of 7208
observations.

From Fig. 5, it is obvious that swap space usage follows a
seasonal pattern. In our statistical data analysis, we will need
to account for this phenomenon. Searching for the reason for
the periodicity, further investigation reveals that the abrupt de-
creases in used swap space are related to the log rotation, which
by default is one of the routines started by the cron daemon
on Sunday mornings at about 4:00 a.m. In the course of the
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archiving of the Apache access log files, the HUP signal is sent
to the Apache parent process, triggering it to kill all of its child
processes, re-open any log files, and spawn a new set of children
to handle requests [3]. This means that the system autonomously
invokes a software rejuvenation mechanism by regularly killing
the Apache child processes even if the MaxRequestsPerChild
parameter is set to zero. Fig. 5 also shows that considerable in-
creases in UsedSwapSpace often (but not always) occur at fixed
intervals. This is especially clear for the second week of data
collection, about 135 to 300 hours into the experiment. Again,
this pattern is caused by the cron daemon; among the com-
mands it invokes by default on a daily basis is the update mech-
anism of the database used by slocate for quickly searching
for files in the system. Although the updating is started with
a low priority, under usual circumstances it would be finished
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TABLE II
TREND TEST AND ESTIMATION FOR RESPONSETIME, AND FREEPHYSMEM

“ ResponseTime FreePhysMem
z 21.569 14.873
Estimated slope 0.061 ms/hr 8.377 kB/hr

95% s-confidence interval

(0.055 ms/hr, 0.067 ms/hr)

(7.287 kB/hr, 9.472 kB/hr)

within a short time. However, during our experiments, the web
server is constantly in an overload state because the request rate
exceeds its capacity. As a consequence, the memory require-
ments of the database update, and (eventually) the process it-
self, are directed to the swap space. This explains why the in-
creases in UsedSwapSpace are not noticeably accompanied by
increases in FreePhysMem. Furthermore, the incidental rejuve-
nation carried out once a week frees the resources for the execu-
tion & termination of those processes that had been started but
never finished throughout the week.

Fig. 5 suggests that even in the presence of this incidental re-
juvenation responsible for the weekly pattern, there remains an
overall trend in UsedSwapSpace. However, from the plot alone
we cannot determine whether this residual aging is s-significant
or not. Moreover, due to the variability as well as the existence
of outliers, it is difficult to visually discern any trends from the
plots of ResponseTime (Fig. 3), and FreePhysMem (Fig. 4). Be-
cause mere eyeballing does not suffice, we will apply statistical
techniques for trend test and trend estimation in the following
section.

III. STATISTICAL ANALYSIS OF RESOURCE-USAGE DATA

A. Trend Test, and Estimation

In our first analyses, we wish to determine if the data col-
lected indicate that the response time of the web server degrades,
or that the memory is depleted over time. Toward this end, we
apply a set of non-parametric statistical methods. Analyses to
be used depend on whether seasonal patterns are present in the
respective time series examined.

1) Data Without a Seasonal Pattern: In this section, we
deal with the two time series showing no signs of seasonality:
ResponseTime, and FreePhysMem (see Figs. 3, and 4, respec-
tively).

For testing the null hypothesis that a sample y1,y2, ..., Yn
does not exhibit a trend, Mann [28] used a linear function of
a test statistic originally developed by Kendall [25] for testing
whether two sets of rankings are s-independent. The direct ap-
plication of this test statistic W for our purposes is known as
the Mann-Kendall test for trend. In this context, the value of the
test statistic is computed as

:z_: Z sen(yr — yi)-

=k+1

Of all n’' = (%) = n(n — 1)/2 pairs of observations y, y;(k <
1), w counts those pairs for which the earlier observation yy, is
smaller than y;, and subtracts the number of pairs for which the
latter observation is smaller. While a value of w close to zero

suggests that there is no trend in the data, a high absolute value
of the test statistic hints at the existence of a trend. For the cal-
culation of w, tied pairs, i.e., those pairs for which y; = v, are
not taken into account. However, the existence of such tied pairs
does influence the variance of the test statistic. If the time series
is composed of o distinct sets of values, with ¢; observations in
the j** set, then the variance of W is given by [26, p. 43]

Var(W)= L

1S n(n—1)(2n +5)

Zt

Under the null hypothesis, the distribution of W is always sym-
metric, and the expected value of W is equal to zero. Moreover,
for n approaching infinity, the distribution of W' converges to
the s-normal distribution. Allowing for a continuity correction
[26, pp. 41-42], the value of the test statistic

)(2t; +5)|.

_ W —sgn(W)

1
Var(W) W

can be compared to the quantiles of the standard s-normal distri-
bution in order to check whether the null hypothesis of no trend
in the data can be rejected.

The values of Z calculated for the time series ResponseTime,
and FreePhysMem are listed in Table II. Both are larger than
Ao.975 = 1.960, the 97.5% quantile of the standard s-normal
distribution. Consequently, in each case, the null hypothesis that
the time series contains no trend can be rejected at a Type I error
level (i.e., a long-term probability of rejecting the null hypoth-
esis when it is true) of 5%. This means that, although we have
not been able to visually discover any trends in Figs. 3 & 4,
trends are present in the data, and these trends are s-significant.
Moreover, the positive signs of the z values show that the two
trends are increasing.

To determine estimates for the slopes, we apply a non-para-
metric procedure developed by Sen [32]. This method is not af-
fected by outliers, and it is robust to missing data. Like the cal-
culation of the value of the test statistic W, the approach focuses
on all pairs of data points y, y; with k < [. For each of these
pairs, the slope qx; = (i — yx)/(l — k) is calculated. Sen’s
slope estimate is defined as the median of the n’ = n(n — 1)/2
slopes obtained.

A two-sided 100 - (1 — a)% s-confidence interval for the
estimated slope can be derived by the procedure described in
[18, p. 218]: After sorting the n’ slopes in increasing order,
the lower limit of the s-confidence interval is given by the
((n" — ca)/2)t" largest of these slopes, while the upper limit
is given by the ((n’ + c,)/2 + 1)** largest slope, where
Cq = Al—oz/2 Var(W)
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TABLE III
TREND TEST AND ESTIMATION FOR USEDSWAPSPACE

H UsedSwapSpace
z 68.443
Estimated slope 7.714 kB/hr

95% s-confidence interval

(7.714 kB/hr, 7.786 kB/hr)

Although the procedure is simple enough, its memory re-
quirements are quite demanding for our time series consisting
of n = 7208 observations, because almost 26 million slopes
have to be computed, and sorted. The slope estimates, and their
respective 95% s-confidence intervals are shown in Table II. As
anticipated after the calculation of the values of the Z statistic,
the estimated slope is positive for both ResponseTime, and
FreePhysMem. Moreover, none of the s-confidence intervals
contains the value zero; this corroborates the earlier finding that
the trends are s-significant at a Type I error level of 5%.

For ResponseTime, the result is consistent with the symp-
toms of software aging: the longer the web server has been
operating, the more time it tends to need for reacting to a re-
quest. On the average, the response time as perceived by the
user increases by about 0.06 ms every hour. While this value is
rather small, we have to keep in mind that we are dealing with
a long-running system. Because the slope estimate is based
on more than 3.5 weeks worth of data, we can be sure that it
reflects not merely some local variation but rather the average
change that is in effect over a long period of time. For example,
in the course of four weeks, the expected increase in the re-
sponse time of one request is 41 ms, about 18% of the average
response time of one request measured at the beginning of the
experiments.

With regard to the FreePhysMem time series, we would
have expected a decreasing trend rather than the increasing
one that we detected. A possible explanation for the observed
behavior is the fact that free physical memory in the system
cannot be lower than a certain threshold. Because the connec-
tion rate of 400 connections per second exceeds the capacity
of the web server, the physical memory is close to its lower
limit from the very beginning of the experiment. Therefore,
there is little if any scope left for a further decrease in free
physical memory. Rather, the system tries to free some of the
used physical memory. Indeed, the fluctuations in the time se-
ries (cf. Fig. 4) are much more drastic than if the web server
is operated within its capacity, which hints at the constant ac-
tivities undertaken by the system to reclaim physical memory.
The overall increase in free physical memory may therefore be
due to the successful paging out of inactive processes initially
blocking the resource.

In the plot of UsedSwapSpace, an upward trend is clearly
visible, although it is superimposed with the seasonal pattern
caused by the weekly “rejuvenation”. We will further investigate
this global trend in the used swap space in the next section.

2) Data With a Seasonal Pattern: For seasonal data, Hirsch
et al. [23] proposed a modified Mann-Kendall test. The main
idea is to separately treat the data of each of the m seasons.

From the subsample pertaining to the i*" season, denoted by
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Yi1, Yi2, - - - » Yin, » Where n; is the total number of observations
for this season, the value

nifl n;

w; = Z Z sgn(yit — Yik)

k=1 l=k+1

is calculated. Under the null hypothesis of no trend, the statistic
W; is asymptotically s-normal with variance

Var(W;) = % ni(ni—1)(2ni+5)— 3ty (b= 1)(2445)|
j=1

assuming that the data of the i" season consist of o; different

values with the number of data points taking the j** value given

by ti j-

If the null hypothesis is true, then the W; statistics are mu-
tually s-independent, and their sum W = > ™", W, follows
an s-normal distribution with expectation zero, and variance
Var(W) = >, Var(W;). Therefore, the hypothesis can be
tested by computing the value of the statistic Z, defined ac-
cording to (1), and comparing it to the respective percentiles of
the standard s-normal distribution.

Because the automatic “rejuvenation” carried out by the
system takes place once a week (i.e., after 7 x 24 x 60 =
10080 minutes), and measurements are taken every five min-
utes, there are rn = 10080/5 = 2016 seasons to be considered.
The calculation of the values of the 2016 statistics W;, and
their variances, leads to a z of 68.443, which is larger than
X975 = 1.960, and therefore indicates the existence of a
(positive) trend in the data at a Type I error level of 5%.

According to van Belle & Hughes [39], a different trend test
based on a rank order test developed by Sen [33] is more pow-
erful than the seasonal Mann-Kendall test. However, this test
requires an identical number of observations for each season.
As a consequence, for our data spanning more than 3.5 weeks,
the computation can only be based on the 3 X 2016 = 6048 data
points related to three full weeks, while 1160 observations have
to be discarded. Nevertheless, we did carry out this test, and re-
ceived a result similar to the one of the seasonal Mann-Kendall
test; the null hypothesis of no trend can be rejected at a Type 1
error level of 5%.

Like the Mann-Kendall test, Sen’s slope estimator can be
adapted in the presence of a seasonal pattern, cf. [18, pp.
227-228]. Again, the m seasons are at first analysed separately,
calculating the slope ¢;x1 = (yu — vir)/(l — k) for each of
the n, = n;(n; — 1)/2 pairs of data points y;x,yi (K < 1)
belonging to season i. The overall slope estimate is then the
median of all n’ = Y7 | n} slopes. With n’ given above, and
Var(W) computed as the sum of the m variances Var(W;),
the 100 - (1 — )% s-confidence interval for the slope estimate
is derived in the same way as described for the (basic) Sen’s
slope estimator.

For the slope of UsedSwapSpace, the estimate as well as the
95% s-confidence interval are listed in Table III. Due to the
periods in which swap space usage remains constant, many of
the individual slopes ¢;r; are identical; this explains why the
lower bound of the s-confidence interval has the same value
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as the slope estimate itself. The fact that the s-confidence in-
terval merely contains positive values confirms the earlier re-
sult that the amount of swap space used features an increasing
global trend. The estimated slope is of the same magnitude as
the one for free physical memory shown in Table II. In fact, its
95% s-confidence interval is completely contained in the 95%
s-confidence interval derived for the latter quantity. This gives
rise to the question of whether the system ages at all with re-
spect to memory usage, because the amplified usage of swap
space could be explained by the swapping of unused processes
from the physical memory. However, we have to remember that
the global trend already incorporates the effects caused by the
weekly log rotation, which we discussed above in Section II-C.
Without the incidental rejuvenation prompted by this mecha-
nism, accumulated memory leaks related to the Apache child
processes would not be released, and the increase in swap space
usage would be considerably higher. For example, based on the
1619 earliest observations of the data set, collected in the 135
hours before the first weekly rejuvenation, Sen’s slope estimate
amounts to 34.442 kB/hr.

Buteven in the presence of the incidental rejuvenation, the de-
pletion in swap space is appreciable. Although the overall slope
of 7.714 kB/hr may seem negligible, the expected increase of
swap space usage within four weeks is about 5184 kB, almost
as much as the initial amount of used swap space at the begin-
ning of the experiments. If this trend continues, the resource will
ultimately be exhausted. To avoid this event, and the associated
system failure, a more deliberate, effective software rejuvena-
tion than the one connected to the log rotation may be called for.
A good scheduling decision requires the prediction of future re-
source usage. In addition to the considerable “residual aging”,
used swap space also shows a lot of local variation. Therefore, it
does not suffice to predict the amount of used swap space based
on the overall slope alone: A sudden local increase might lead
to a complete resource exhaustion. Because the local variation
has a distinct weekly pattern, we will explore the applicability
of seasonal time series models for fitting and forecasting swap
space usage in the following section. We will also employ such
models for FreePhysMem, and ResponseTime, to check our as-
sumption that they do not feature any seasonality, as well as to
determine whether there are any dependencies between consec-
utive observations.

B. Time Series Analysis

A simple class of models for time series in which consecutive
observations are correlated is the autoregressive (AR) model.
In an autoregressive model of order p, each observation y; is
explained by the p previous values of the time series

P
Yt = Z Piyr—i + ut,
i=1

where the ¢; are fixed parameters. It is assumed that the u;, the
typically unobservable deviations from the perfect autoregres-
sive relationship, are samples from a white noise process with
zero mean, and constant variance o;.

If the trend and the seasonal pattern of the time series anal-
ysed are stable over time, they can be modeled deterministically.
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One way to account for a seasonal structure of period m is via
the inclusion of the coefficients 1, ..., Ym, €ach representing

’ ’

the effect of one season. The resulting model has the form

P m
ye = onb(t) + > biye—i + Y vidje + i, (@)
=1 Jj=1

with the dummy variable d;; being equal to one if the ' obser-
vation belongs to the j season, and zero otherwise. While the
parameter «; needs to be estimated, the function b(¢) stands for
the known part of the deterministic trend component; possible
choices include b(t) = ¢, and b(t) = V/t. An intercept term
g must not be added to the model (2) because it would lead to
perfect multicollinearity [20, p. 118]. For the column vector of
observations with transpose y* = (y1,...,¥,), the model can
be written in matrix form as

y=Xa+ Dy+u, 3)
where
b(1 -
e
b('t) yt;l yt;p e (e
a = (a,d1,-.,0)", vy = (71, 7m)T, and u =
(u1,...,u,)T. If the observations span k complete seasonal

cycles, then the matrix D can be constructed by stacking &
identity matrices; i.e., with I, denoting an m X m matrix
with a diagonal of ones, and off-diagonal elements of zero,
D=|,1I, ---1,]".

For the UsedSwapSpace data, the period of the seasonal
pattern, m, is equal to 2016. The estimation of (3) via the
least squares method requires the inversion of the huge matrix
[XD]T[X D], consisting of (2017 + p) columns, and the same
number of rows. This task can be avoided by carrying out a
partitioned regression [20, pp. 26-27]: In a first step, ¥ and
each of the columns in X are regressed on the dummy variables
in the matrix D, and the residuals are determined; in fact, this
amounts to subtracting the seasonal means from all values. In a
second step, the residuals are used in a subsequent regression to
calculate a&. Based on this estimated parameter vector, as well
as the seasonal means of the time series, 4 can then be obtained.

While parameter estimation is possible, modeling the sea-
sonal pattern with 2016 parameters may not be the most parsi-
monious approach. As an alternative, trigonometric terms at the
seasonal frequencies u; = (27j/m) (j = 1,...,gilb(m/2))
can be employed, modeling the seasonal influence at time ¢ by
[22, p. 41]

gilb(m/2)

> (Bjcos(pit) + 8;sin(p;t)) .
j=1

This formulation does not implicitly include the level of the time
series; therefore, an intercept ¢ should be added to the model.
If the summation over j runs from 1 to gilb(m/2), like in the



previous expression, then the number of parameters used for
modeling the seasonal structure plus the level is equal to m, just
like in the dummy variable approach. However, it is often suffi-

cient to use just the lower-order frequencies j = 1,2,..., f <
gilb(m/2). The resulting model in vector form is
y=X"a*+ D'y +u,
with the matrices
L b(1) o CYip
L b(2) w0 T Y2
X =1 ) P and
]. b(t) Yt—1 yt—p
cos(pu1)  sin(p) cos(uy)  sin(pg)
. cos(2p1) sin(2u1) --- cos(2uyp) sin(2uy)
cos(pyt) sin(uit) cos(prt) sin(urt)
as well as the vectors @* = (ag, a1, ¢1,...,¢p)7, and y* =

Typically, neither the number of frequencies f to be used for
the seasonal pattern nor the autoregressive order p are known.
Choosing the model that fits the data best (i.e., that achieves
the lowest estimated error variance 67, = n~'Y.. 47 in
least squares estimation, or the largest likelihood value in
maximum likelihood estimation) may result in over-fitting.
Therefore, model order selection criteria effectively penalize
for the number of freely estimated parameters in the model, r.
The Bayesian information criterion (BIC) proposed by Schwarz
[31], for example, takes the form [27]

In(n)

BIC = In (63) + or
for a wide variety of models, assuming that the disturbances
of the model estimated via least squares estimation follow a
Gaussian white noise process. The model attaining the smallest
BIC value is considered the most appropriate one.

For the model order selection in a model with deterministic
terms, Liitkepohl [27] proposed to estimate these terms in a first
step, subtract the estimated deterministic function from the data,
and apply the order selection procedure to the adjusted data.
However, we do not know the number of lower-order frequen-
cies f to be used. We therefore employ the following approach
that allows us to jointly optimize f & p: for all value combina-
tions (f,p) € {0,1,...,100}2, we fit the model to the data and
calculate the BIC, replacing r by (2 + 2 - f + p). (The two ad-
ditional parameters considered in the model order r are related
to the mean, and the trend component.)

For our three time series, Table IV lists the model orders
selected based on the BIC. To permit model validation, all
calculations are merely based on the first 4000 observations of
each time series, i.e., the data collected during roughly the first
two weeks of experiments. The trend component employed for
UsedSwapSpace is the square root trend; for the other two time
series, we include a linear trend. While observations made 7
hours and 40 minutes ago (92 obs x 5 min/obs) influence the
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TABLE IV
SELECTED MODEL ORDERS
AR order p | Frequency order f ‘
FreePhysMem 8 0
ResponseTime 92 0
UsedSwapSpace H 1 10 ‘
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Fig. 6. UsedSwapSpace, first 4000 observations (—) and fitted values (- -).

behavior of ResponseTime, the best model for UsedSwapSpace
according to the BIC merely makes use of the last observa-
tion for predicting the future of the time series. The selected
frequency orders confirm the impressions conveyed by the
plots: For FreePhysMem, and ResponseTime, no parameters
modeling a (weekly) seasonality are included. The frequency
order determined for UsedSwapSpace is f = 10. Obviously,
20 parameters are enough for capturing the main features of the
seasonal pattern spanning 2016 observations.

The benefit of explicitly including a seasonal component for
modeling a time series in which seasonality is present can now
be illustrated with the help of UsedSwapSpace. Again using the
first 4000 observations, the parameters of the model with an au-
toregressive order of 1, and a frequency order of 10, are esti-
mated for UsedSwapSpace via ordinary least squares estima-
tion. The observations employed for estimation as well as the
respective fitted values are shown in Fig. 6. The model fit at-
tained with a total of 23 parameters is very good; in fact, the
observations and the fitted model can hardly be distinguished.

To validate the model, we use the parameter estimates from
the first 4000 observations, as well as the 4000th observation
itself, and recursively predict the future behavior of the time
series based on this information only. The predictions, and the
data actually measured are plotted in Fig. 7. The comparison
seems to indicate that the model is not only able to fit the data,
but that it also provides a good forecast. Merely relying on the
data collected during the first two weeks of experiments, we
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Fig. 7. UsedSwapSpace, last 3208 observations (—) and predicted values (- -).

could have predicted the main features of the time series for the
following 1.5 weeks.

We note that the previous literature on software aging had
never explicitly modeled the seasonality in resource usage and
system performance. Neglecting such patterns may result in
straightforward but inaccurate predictions, and hence in sub-
optimal decisions regarding when to rejuvenate. Our results are
encouraging, as they seem to indicate that a relatively simple,
parsimonious model can produce adequate forecasts.

IV. CONCLUSIONS

In this paper, we have investigated the development of
resource utilization in an Apache web server. Data collected
during experiments in which the web server was put in an
overload condition indicated the presence of software aging.
However, the periodical killing of all Apache child processes
in the course of the weekly log rotation (partly) offsets the
aging phenomenon, and can therefore be considered a kind
of incidental software rejuvenation. This insight, plus our
findings obtained while trying to determine the capacity of
the web server, highlight the necessity to study the influence
of the settings of the web server itself, as well as those of the
operating system.

For analysing the collected data, we employed both non-para-
metric statistical techniques, and parametric time series models.
Because previous research had not accounted for seasonality
in the prediction of resource depletion, we focused on how to
model seasonal patterns, and determine the model order. For the
swap space used, the one data set exhibiting weekly seasonality,
we showed that a parsimonious model of the seasonal structure
is able to adequately predict the future behavior for a period of
more than 1.5 weeks.

These results are promising. They also indicate the potential
for future research. On the one hand, the influence of the config-
uration of the operating system, and the Apache web server, on
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the aging behavior should be studied in detail. On the other hand,
multivariate time series models can be employed for investi-
gating the interactions between various system resources. The
ultimate goal of all this research is an optimization model that
uses the predictions of resource exhaustion as well as further in-
formation (e.g., the costs of planned, and unplanned downtime)
for deriving the best rejuvenation schedule.

ACKNOWLEDGMENT

The authors would like to thank Bennett Crowell, Department
of Electrical and Computer Engineering at Duke University, for
his helpful comments on a previous version of this paper.

REFERENCES
[1] “Apache 1.3 API Documentation,” Apache Software Foun-
dation [Online].  Available: http://httpd.apache.org/dev/apidoc/
apidoc_HARD_SERVER_LIMIT.html
[2] ——, “Apache Core Features,” [Online]. Available: http://httpd.
apache.org/docs/1.3/mod/core.html
[3] ——, “Stopping and Restarting Apache,” [Online]. Available: http://

httpd.apache.org/docs/1.3/stopping.html

M. Arlitt and C. Williamson, “Understanding web server configura-

tion issues,” Software—Practice and Experience, vol. 34, no. 2, pp.

163-186, 2004.

[5] A. Avritzer and E. J. Weyuker, “Monitoring smoothly degrading sys-
tems for increased dependability,” Empirical Software Engineering,
vol. 2, no. 1, pp. 59-77, 1997.

[4

=

[6] L.Bernstein and C. M. R. Kintala, “Software rejuvenation,” CrossTalk,
vol. 17, no. 8, pp. 23-26, 2004.
[7]1 G.Candea,J. Cutler, and A. Fox, “Improving availability with recursive

microreboots: a soft-state system case study,” Performance Evaluation,
vol. 56, no. 1-4, pp. 213-248, 2004.

[8] K. J. Cassidy, K. C. Gross, and A. Malekpour, “Advanced pattern

recognition for detection of complex software aging in online trans-

action processing servers,” in Proc. International Conference on

Dependable Systems and Networks, 2002, pp. 478-482.

V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,

K. Vaidyanathan, and W. P. Zeggert, “Proactive management of soft-

ware aging,” IBM Journal of Research and Development, vol. 45, no.

2, pp. 311-332, 2001.

[10] “Software Rejuvenation,” Department of Electrical and Computer En-
gineering, Duke University [Online]. Available: http://www.software-
rejuvenation.com/

[11] T. Dohi, K. GoSeva-Popstojanova, and K. S. Trivedi, “Analysis of soft-
ware cost models with rejuvenation,” in Proc. International Symposium
on High Assurance Systems Engineering, 2000, pp. 25-34.

[12] ——, “Statistical non-parametric algorithms to estimate the optimal
software rejuvenation schedule,” in Proc. International Pacific Rim
Symposium on Dependable Computing, 2000, pp. 77-84.

[13] ——, “Estimating software rejuvenation schedules in high assurance
systems,” Computer Journal, vol. 44, no. 6, pp. 473-482, 2001.

[14] T. Dohi, K. Goseva-Popstojanova, K. Vaidyanathan, K. S. Trivedi,
and S. Osaki, “Software rejuvenation: modeling and applications,”
in Handbook of Reliability Engineering, H. Pham, Ed. London:
Springer, 2003, pp. 245-263.

[15] S.Garg, A. Puliafito, M. Telek, and K. S. Trivedi, “Analysis of software
rejuvenation using Markov regenerative stochastic Petri net,” in Proc.
Sixth International Symposium on Software Reliability Engineering,
1995, pp. 24-217.

[16] ——, “Analysis of preventive maintenance in transactions based pro-
cessing systems,” IEEE Trans. Computers, vol. 47, no. 1, pp. 96-107,
2001.

[17] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S. Trivedi, “A
methodology for detection and estimation of software aging,” in Proc.
Ninth International Symposium on Software Reliability Engineering,
1998, pp. 283-292.

[18] R. O. Gilbert, Statistical Methods for Environmental Pollution Moni-
toring. New York: Van Nostrand Reinhold, 1987.

[19] J. Gray and D. P. Siewiorek, “High-availability computer systems,”
IEEE Computer, vol. 24, no. 9, pp. 39-48, 1991.

[20] W. H. Greene, Econometric Analysis, Sth ed. Upper Saddle River:
Prentice-Hall, 2003.

[9

—



420

[21] M. Grottke and K. S. Trivedi, “Software faults, software aging and soft-
ware rejuvenation,” Journal of the Reliability Engineering Association
of Japan, vol. 27, no. 7, pp. 425-438, 2005.

[22] A. C. Harvey, Forecasting, Structural Time Series Models and the
Kalman Filter. Cambridge: Cambridge University Press, 1989.

[23] R. M. Hirsch, J. R. Slack, and R. A. Smith, “Techniques of trend anal-
ysis for monthly water quality data,” Water Resources Research, vol.
18, no. 1, pp. 107-121, 1982.

[24] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software rejuvena-
tion: analysis, module and applications,” in Proc. Twenty-Fifth Interna-
tional Symposium on Fault-Tolerant Computing, 1995, pp. 381-390.

[25] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol.
30, no. 1/2, pp. 81-93, 1938.

[26] , Rank Correlation Methods.
pany Ltd., 1948.

[27] H. Liitkepohl, “Univariate time series analysis,” in Applied Time Series
Econometrics, H. Liitkepohl and M. Kritzig, Eds. Cambridge: Cam-
bridge University Press, 2004, pp. 8-85.

[28] H. B. Mann, “Nonparametric tests against trend,” Econometrica, vol.
13, no. 3, pp. 245-259, 1945.

[29] D. Mosberger and T. Jin, “httperf: a tool for measuring web server
performance,” in Proc. First Workshop on Internet Server Performance,
1998, pp. 59-67.

[30] Netcraft Ltd., Netcraft: February 2006 Web Server Survey [On-
line]. Available: http://news.netcraft.com/archives/2006/02/02/feb-
ruary_2006_web_server_survey.html

[31] G. Schwarz, “Estimating the dimension of a model,” The Annals of
Statistics, vol. 6, no. 2, pp. 461-464, 1978.

[32] P. K. Sen, “Estimates of the regression coefficient based on Kendall’s
tau,” Journal of the American Statistical Association, vol. 63, no. 4, pp.
1379-1389, 1968.

[33] ——, “On a class of aligned rank order tests in two-way layouts,” An-
nals of Mathematical Statistics, vol. 39, no. 4, pp. 1115-1124, 1968.

[34] M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota, and Y. Liu,

“Software aging and multifractality of memory resources,” in Proc. In-

ternational Conference on Dependable Systems and Networks, 2003,

pp. 721-730.

M. Sullivan and R. Chillarege, “Software defects and their impact on

system availability—a study of field failures in operating systems,” in

Proc. Twenty-First International Symposium on Fault-Tolerant Com-

puting, 1991, pp. 2-9.

A. T. Tai, L. Alkalaj, and S. N. Chau, “On-board preventive mainte-

nance: a design-oriented analytic study for long-life applications,” Per-

formance Evaluation, vol. 35, no. 3—4, pp. 215-232, 1999.

K. Vaidyanathan, D. Selvamuthu, and K. S. Trivedi, “Analysis of

inspection-based preventive maintenance in operational software

systems,” in Proc. Twenty-First International Symposium on Reliable

Distributed Systems, 2002, pp. 286-295.

K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for

software rejuvenation,” IEEE Transactions on Dependable and Secure

Computing, vol. 2, no. 2, pp. 124-137, 2005.

London: Charles Griffin & Com-

[35]

[36]

[37]

[38]

IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 3, SEPTEMBER 2006

[39] G. van Belle and J. P. Hughes, “Nonparametric tests for trend in water
quality,” Water Resources Research, vol. 20, no. 1, pp. 127-136, 1984.

[40] W. Xie, Y. Hong, and K. S. Trivedi, “Analysis of a two-level software
rejuvenation policy,” Reliability Engineering & System Safety, vol. 87,
no. 1, pp. 13-22, 2005.

Michael Grottke received the M.A. degree in economics (1999) from Wayne
State University, Detroit, MI, and the Diploma degree in business administra-
tion (2000) as well as the Dr. rer. pol. degree in statistics (2003) from the Uni-
versity of Erlangen-Nuremberg, Niirnberg, Germany. For his dissertation, he
was awarded the Promotional Award for Science of the State Bank of Bavaria.
He is currently working as a research associate in the Department of Electrical
and Computer Engineering at Duke University, Durham, NC, on a Fellowship
from the German Academic Exchange Service. His research interests include
software reliability, software process maturity, software rejuvenation, as well as
stochastic point processes and combinatorial problems.

Lei Li received the B.S. (1996), and M.S. (1999) degrees in electrical engi-
neering from Peking University, Beijing, China; as well as the M.S. (2002), and
Ph.D. (2004) degrees in electrical and computer engineering from Duke Univer-
sity, Durham, NC. He is currently working in the Wireless Group of Freescale
Semiconductor Inc., Austin, TX, where he is a Senior Engineer. His interests
are in the field of integrated circuit design, verification, and design-for-test.

Kalyanaraman Vaidyanathan received the B.E. degree in computer science
(1996) from the University of Madras, India, and the M.S. (1999) and Ph.D.
(2002) degrees in electrical and computer engineering from Duke University.
He was a recipient of the IBM Graduate Fellowship Award in 2000. His re-
search interests include software reliability, and performance and dependability
evaluation of computer systems. He is currently a research engineer in the Scal-
able Systems Group, Sun Microsystems, San Diego, CA, exploring proactive
fault monitoring techniques through telemetry and pattern recognition.

Kishor S. Trivedi holds the Hudson Chair in the Department of Electrical and
Computer Engineering at Duke University, Durham, NC. He has been on the
Duke faculty since 1975. He is the author of a well-known text entitled Proba-
bility and Statistics with Reliability, Queuing, and Computer Science Applica-
tions with a thoroughly revised second edition being published by John Wiley.
His research interests are in reliability and performance assessment of computer
and communication systems. He has made seminal contributions in software re-
juvenation, solution techniques for Markov chains, fault trees, stochastic Petri
nets, and performability models. He has actively contributed to the quantifica-
tion of security and survivability.



