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Abstract

This paper proposes an approach to examining how testing affects the opera-

tional behavior of aging software systems. Such an approach requires models

for the testing phase and the operational phase that explicitly account for

crash failures due to both aging-related and non-aging-related bugs. We de-

velop appropriate semi-Markov models and derive expressions for computing

the respective transient and steady-state probabilities needed. Our numeri-

cal examples suggest that disregarding the effects of non-aging-related bugs

can result in wrong conclusions about the testing phase and the operational

phase.

Moreover, we show how to combine the two models for a joint analysis in

which metrics of interest concerning the operational phase, like the optimal

rejuvenation rate, are random variables whose distributions are influenced

by the potential outcomes of testing.
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1. Introduction

“Software aging”, first studied formally by Huang et al. [20] under the

term “process aging”, relates to the phenomenon that during operation a

software system may show performance degradation and an increasing fail-

ure rate which cannot be attributed to changes in the user behavior or the

software code. In fact, software aging is caused by specific software faults

(or “bugs”), known as aging-related bugs [16, 17, 18]. Typically, the activa-

tion of such faults leads to error states that accumulate inside the running

system. The gradual shifting from an error-free to a failure-probable inter-

nal state is referred to as the “aging effect” [14]. Classes of aging effects

include resource leakage (e.g., memory leakage due to unused but untermi-

nated processes and disk space depletion caused by increasing error log files),

the accumulation of round-off errors, and the accrual of data corruption [14].

When trying to determine the percentage of aging-related bugs among the

faults contained in a specific software based on failure reports, it is essential

to classify unique software faults. Repeated failure occurrences related to a

fault already included in the analysis should thus be omitted. The exami-

nation of 520 unique software faults in the flight software of 18 JPL/NASA

missions [15] revealed that 4.4% of them were aging-related bugs, while 93.5%

were non-aging-related bugs; the other faults could not be classified based

on the available information.

The technique of proactively removing aging effects via system reboots,

application restarts, etc. has been known as “software rejuvenation” [20].

Much research has focused on aging-related bugs causing the system to hang

or crash and the question of how frequently to trigger software rejuvena-
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tion during system operation from an availability or costs perspective. The

model used by Huang et al. [20] for this purpose consists of four states: a

highly-robust state in which the system is safe from immediate failures, a

failure-probable state in which the system has aged sufficiently for a failure

to occur, a failure (crash) state, and a rejuvenation state. Since all transi-

tion distributions between these states are assumed to be exponential, this

model forms a continuous-time Markov chain. It is generalized by Dohi et

al. [7, 8, 9] into a semi-Markov model with general transition distributions.

Like in the original model, Dohi et al. assume that software rejuvenation is

only triggered in the failure-probable state. This implies that the system

or the user is able to perfectly detect at any given time whether or not the

presence of aging effects requires the system to be rejuvenated. However, this

is often not the case. Therefore, Garg et al. [10] present a Markov regenera-

tive stochastic Petri net in which the running system is always rejuvenated

at a fixed time after it entered the highly-robust state. The model allows

the distribution of the time to carry out software rejuvenation to depend on

the system state in which it was triggered. Removing this possibility, which

Garg et al. do not make use of in their numerical example anyway, Suzuki et

al. [35] show that the model can be transformed into a semi-Markov process

consisting of three states only: an up state, a crash state, and a rejuvenation

state. This three-state structure has been employed in many papers investi-

gating software rejuvenation. For example, Garg et al. [11] and Vaidyanathan

and Trivedi [37] represent the software behavior by such a three-state semi-

Markov model. Similarly, the “operational state model I” used by Salfner and

Wolter [33] is a stochastic Petri net consisting of three places corresponding
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to the above-mentioned states.

In this paper, we present an approach for studying how the testing of

an aging software system affects its behavior in the operational phase. How

does the length of the testing phase influence the optimal frequency of trig-

gering software rejuvenation, and the availability attainable? How should

we allocate our time budget to various testing techniques? When trying to

answer these questions, we have to note that system crashes during usage are

caused not only by aging-related bugs, but by non-aging-related bugs as well.

However, software rejuvenation cannot reduce the risk of future failures due

to non-aging-related bugs. Moreover, because of inherent differences between

the two fault types it can be expected that their proportions among the faults

detected change as testing proceeds: Aging-related bugs tend to show them-

selves when the software has been running uninterruptedly for some time;

this is more likely to happen later in the testing phase, after many of those

non-aging-related bugs that make the software crash have been found and

removed. For our analyses it is therefore crucial to distinguish between the

two fault types in the testing phase as well as in the operational phase.

None of the described models explicitly account for crashes caused by

non-aging-related bugs. This is especially obvious for the models by Huang

et al. [20], Dohi et al. [7, 8, 9] and Garg et al. [10], where crash failures can

only occur after the system has entered the failure-probable state.

Only few research works have dealt with the testing of aging software sys-

tems. Matias and Freitas Filho [28] and Matias et al. [27] show how design

of experiments can be employed to define test setups suitable for evaluat-

ing the influence of various workload factors on aging effects. Building on

4



this work, Carrozza et al. [2] propose an approach to reducing the number

and the duration of tests required to detect the presence of software aging at

different levels of the workload factors, and to estimate aging trends in perfor-

mance parameters monitored. In contrast, Matias et al. [27, 29] focus on the

distribution of the time to aging-related failure during normal operation to

characterize the aging behavior. In [29], they estimate this distribution using

quantitative accelerated life tests, which decrease the test duration needed to

obtain a sufficient sample size by testing the system at higher-than-normal

stress levels. The accelerated degradation test technique employed in [27]

does not even require failure time data for estimating the failure time distri-

bution but instead relies on observations of a suitable degradation measure

made under various stress levels.

While these approaches are directed at designing test campaigns that

help detect and quantify the aging behavior during operations, to the best

of our knowledge none of the previous research on software aging deals with

the detection and correction of software faults in aging systems during the

testing phase.

In the field of software reliability engineering [25, 30, 31], many software

reliability models tracking the number of faults removed or faults remaining

have been developed. Most of them are one-dimensional counting processes

belonging to the class of self-exciting point processes, in which the future

of the process may (but does not have to) depend on parts of its own his-

tory [4, 12, 13, 22]. For example, in the binomial models [30, pp. 259-267],

like the well-known Jelinski-Moranda model [21], the program hazard rate

is always the product of the current fault content and the per-fault hazard
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rate, whereas the program hazard rate does not at all depend on the process

history but only on global time (i.e., the time since testing started) in the

non-homogeneous Poisson process models [30, pp. 255-259]; both binomial

models and non-homogeneous Poisson process models are Markovian. In

contrast, according to the Littlewood-Verrall model [24] the program hazard

rate is not only influenced by global time and the current fault content, but

also by the time since the last fault removal; this model can be represented

by a semi-Markov process. To evaluate the effects of software testing on the

behavior of an aging system in the operational phase we need a model for the

testing phase that separately keeps track of the removal of aging-related bugs

and non-aging-related bugs. There does not seem to be an existing software

reliability growth model that we can use for our purpose.

This paper is structured as follows: In Section 2, we develop a model for

the detection and removal of both aging-related bugs and non-aging-related

bugs during testing. Similarly, we present a model for the system behavior

in the operational phase that explicitly accounts for crash failures due to

both types of faults in Section 3. In Section 4, we then show how the two

models can be combined to study the potential effects that testing will have

on the system behavior in the operational phase. In particular, we point out

that the optimal rejuvenation rate and the optimal availability attainable are

random variables; the potential outcomes of testing can be discussed based on

the distributions and the expected values of these random variables. Finally,

Section 5 concludes the paper.

6



2. Modeling the testing phase

2.1. Model formulation

During dynamic testing, the software under test is executed, and faults in

the code are corrected once they have shown themselves by causing the soft-

ware to fail. For studying the removal of aging-related and non-aging-related

bugs during the testing phase we propose a model based on the following

assumptions:

A1 At the beginning of testing, the software contains m aging-related bugs

and n non-aging-related bugs that can lead to crash failures.

A2 As soon as a fault causes a crash it is immediately corrected with-

out introducing any new faults, and the software is instantaneously

restarted. This restart removes all symptoms of aging like the internal

error conditions accrued so far.

A3 Upon a restart, the time to failure due to aging-related bugs follows a

gamma distribution with shape α > 1 and rate βj ≡ β ·(m−j), where j

is the number of aging-related bugs removed so far; i.e., its probability

density function (pdf) and cumulative distribution function (cdf) are

given by

fΓ(x;α, βj) =
βα
j

Γ(α)
xα−1 exp(−βjx) and FΓ(x;α, βj) = 1−

Γ(α, βjx)

Γ(α)
,

respectively, with gamma function Γ(α) =
∫∞

0
ξα−1 exp(−ξ)dξ and up-

per incomplete gamma function Γ(α, βjx) =
∫∞

βjx
ξα−1 exp(−ξ)dξ.

A4 After i non-aging-related bugs have been removed, the time to failure

due to non-aging-related bugs follows an exponential distribution with
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rate φi ≡ φ · (n− i); i.e., its pdf and cdf are given by

fexp(x;φi) = φi exp(−φix) and Fexp(x;φi) = 1− exp(−φix),

respectively.

Our model only takes into account the time actually spent on executing the

software during testing, as is done in most software reliability growth models

[30]. According to assumption A2, fault removal and restart of the system

therefore happen instantaneously upon a crash. Moreover, fault removal is

considered to be perfect, an assumption made by many software reliability

growth models, e.g., by all models of binomial type [30, pp. 260–261], in-

cluding the Littlewood model [23], the Schick-Wolverton model [34], and the

Jelinski-Moranda model [21]. Like in the latter model we also assume that

the per-fault hazard rate is the same constant φ for each non-aging-related

bug.

While a time-constant hazard rate seems appropriate for those faults that

do not cause software aging, each of the gamma distributions with shape pa-

rameter α larger than one used for modeling the times to failure due to

aging-related bugs has an increasing hazard rate [36, p. 132]. For α = 2, the

gamma distribution degenerates to the two-stage Erlang distribution chosen

by Vaidyanathan and Trivedi [37] for approximating the time to aging-related

failure in their comprehensive model of software behavior in the operational

phase. More generally, for α ∈ N+�{1} it becomes the α-stage Erlang distri-

bution, which intuitively represents software aging due to the accumulation

of internal error states: Each one of the (m− j) aging-related bugs remain-

ing in the software causes an error when activated. Assuming that all faults
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have the same constant activation rate β, such errors are created at rate

β · (m − j). After α errors have accrued, the software fails. The gamma

distribution suggests itself as a candidate for generalization.

The values of the parameters α, β and φ depend on the testing technique

employed as well as on other factors, like the capability of the testers or the

complexity of the software under test.

Of course, our assumptions do not perfectly describe reality. For example,

the assumption that faults are always removed without introducing any new

faults is too good to be true. Moreover, the identical activation rates among

all aging-related bugs (β) and among all non-aging-related bugs (φ) imply

that the faults of each type are located in the software uniformly relative

to the testing profile used, which need not be the case. Also, the activation

rates might be affected by time or by other aspects; e.g., the activation rate

of non-aging-related bugs could in fact increase with the extent of error accu-

mulation due to aging-related bugs. Furthermore, based on our discussion of

the Erlang distribution, using the gamma distribution for modeling the time

to failure due to aging-related bugs basically means that all errors caused by

these bugs jointly deteriorate the “health” of the running system, until the

activation of one aging-related bug finally leads to a failure. In reality, differ-

ent kinds of aging effects (e.g., memory leakage and unreleased file handlers)

may accumulate independently of each other.

Each of these assumptions could be replaced with more realistic counter-

parts. For example, we could consider one gamma (or Erlang) distribution

for the time to failure due to each type of aging effect, modeling the overall

time to aging-related failure by the first order statistic of these individual
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times. However, we would then have to make further assumptions regarding

the number of independent aging effects as well as the parameters of the in-

dividual distributions. This would introduce not only additional complexity,

but also a higher degree of arbitrariness, as long as we do not have enough

knowledge about the mechanics of various aging effects. (In the long run,

studies like the one presented by Macêdo et al. [26] may help the research

community attain the understanding required.) Moreover, as the first of its

kind we wish to keep this model explicitly accounting for both aging-related

and non-aging-related bugs as simple as possible, while capturing an impor-

tant aspect neglected by previous research: The aging behavior of a software

system is influenced by crash failures due to non-aging-related bugs. We are

confident that the main results obtained from our model will not be affected

by future refinements of individual assumptions.

We use the tuple (i, j) to define the current state of the software, with i

denoting the number of non-aging-related bugs removed so far, and j repre-

senting the number of aging-related bugs removed so far. Let the stochastic

process {Z(t), t ≥ 0} model the development of the state of the software

over time. According to assumption A3, the future behavior of the process

depends not only on its current state, but also on the time x already spent in

this state (i.e., the time since the last fault removal). Therefore, {Z(t), t ≥ 0}

follows a semi-Markov model with state space Z = {(0, 0), (0, 1), . . . , (n,m)}.

This semi-Markov model is shown in Figure 1.
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0, 0 1, 0 2, 0 n, 0

0, 1 1, 1 2, 1 n, 1

0, 2 1, 2 2, 2 n, 2

0,m 1,m 2,m n,m

Fexp(x;φ0)

Fexp(x;φ0)

Fexp(x;φ0)

Fexp(x;φ0)

Fexp(x;φ1)

Fexp(x;φ1)

Fexp(x;φ1)

Fexp(x;φ1)

Fexp(x;φn−1)

Fexp(x;φn−1)

Fexp(x;φn−1)

Fexp(x;φn−1)

Fexp(x;φ2)

Fexp(x;φ2)

Fexp(x;φ2)

Fexp(x;φ2)

FΓ(x;α, β0) FΓ(x;α, β0) FΓ(x;α, β0) FΓ(x;α, β0)

FΓ(x;α, β1) FΓ(x;α, β1) FΓ(x;α, β1) FΓ(x;α, β1)

FΓ(x;α, β2) FΓ(x;α, β2) FΓ(x;α, β2) FΓ(x;α, β2)

FΓ(x;α, βm−1) FΓ(x;α, βm−1) FΓ(x;α, βm−1) FΓ(x;α, βm−1)

Figure 1: Semi-Markov model for fault removal in the testing phase

2.2. Deriving transient state probabilities

The probability that exactly i non-aging-related bugs and j aging-related

bugs have been removed after testing the software for te time units corre-

sponds to the transient state probability of state (i, j) at time te, given that

the system started in state (0, 0) at time 0. In general, the transient state

probabilities

πzsze(t) ≡ P (Z(t) = ze|Z(0) = zs), zs, ze ∈ Z,
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satisfy the following equation [6]:

πzsze(t) = δzsze · F zs(t) +
∑

z∈S(zs)

∫ t

0

R(zs, z, t− θ)πzze(θ)dθ. (1)

The indicator function δzsze is equal to one if zs = ze, and zero otherwise.

F zs(t) denotes the survival function of the sojourn time in state zs. S(zs) is

the set of all states directly reachable from state zs. R(zs, z, t− θ) represents

the kernel of the semi-Markov process,

R(z1, z2, t) = P (Vn+1 = z2, Tn+1 − Tn ≤ t|Vn = z1), n = 0, 1, 2.

Tn is the time of the nth transition, while Vn ≡ Z(Tn+) is the current state

right after this nth transition. The event that upon entering state z1 a direct

transition to state z2 will occur no later than after t time units implies that

no other state will be entered prior to this transition. Based on fz1z(x) and

Fz1z(x), the pdf and the cdf assigned to the transition from state z1 to state

z ∈ S(z1), the conditional probability embodied by the kernel can therefore

be expressed as

R(z1, z2, t) =

∫ t

0

fz1z2(x) ·
∏

z∈S(z1)
z 6=z2

(1− Fz1z(x))dx, z2 ∈ S(z1).

For any value x of the sojourn time, the integrand is the product of the pdf

fz1z2(x), representing the tendency that z2 is entered a this very moment,

and the expression
∏

z∈S(z1)
z 6=z2

(1 − Fz1z(x)), the probability that no transition

to any other state directly reachable from z1 has occurred so far.

Evaluating the transient probabilities based on Equation (1) requires the

computation of convolutions. It is thus advisable to solve the problem in the
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Laplace domain. For the Laplace transform of πzsze(t) follows in general [6]:

π∗
zsze

(s) = δzsze · F
∗

zs
(s) +

∑

z∈S(zs)

r∗zsz(s)π
∗
zze

(s). (2)

Here F
∗

zs
(s), the Laplace transform of the survival function of the sojourn

time in state zs, can be calculated as [6]

F
∗

zs
(s) =

1−
∑

z∈S(zs)
r∗zsz(s)

s
,

while r∗z1z2(s) represents the Laplace transform of the kernel,

r∗z1z2(s) =

∫ ∞

0

exp(−st)dR(z1, z2, t)

=

∫ ∞

0

exp(−st) · fz1z2(t) ·
∏

z∈S(z1)
z 6=z2

(1− Fz1z(t))dt, z2 ∈ S(z1).

Note that our specific semi-Markov model has the structure of a bivariate

pure birth process. Therefore, the system of equations based on the general

Equation (2) can be solved recursively for this model. Specifically, for any

two states (i, j) and (i′, j′) we obtain from Equation (2):

π∗
(i,j)(i′,j′)(s) =























































0 if i > i′ or j > j′,

F
∗

(i,j)(s) if i = i′ and j = j′,

r∗(i,j)(i+1,j)(s)π
∗
(i+1,j)(i′,j)(s) if i < i′ and j = j′,

r∗(i,j)(i,j+1)(s)π
∗
(i,j+1)(i,j′)(s) if i = i′ and j < j′,

r∗(i,j)(i+1,j)(s)π
∗
(i+1,j)(i′,j′)(s)

+ r∗(i,j)(i,j+1)(s)π
∗
(i,j+1)(i′,j′)(s) if i < i′ and j < j′.

(3)

Evaluating this for any starting state zs = (i, j) and end state ze = (i′, j′),

recursively plugging in the Laplace transforms of the transient state proba-
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bilities, yields the form

π∗
zsze

(s) = F
∗

ze
(s) ·

∑

b∈P(zs,ze)





|b|−1
∏

u=1

r∗b(u)b(u+1)(s)



 , (4)

where P(zs, ze) denotes the set of all paths from state zs to state ze; each

path is represented as a tuple containing the states along the path, including

the start and end states. For a specific path b, |b| is the length of the tuple,

and b(u), u = 1, . . . , |b|, denotes the uth state on the path.

As an example, consider the set of all paths from state (0, 0) to state

(1, 1) in our model:

P((0, 0), (1, 1)) = {((0, 0), (1, 0), (1, 1)), ((0, 0), (0, 1), (1, 1))} .

The length of path b = ((0, 0), (1, 0), (1, 1)) is |b| = 3, and b(2) = (1, 0) is the

second state entered on this path. According to Equation (4), the Laplace

transform of π(0,0)(1,1)(t) is thus given by

π∗
(0,0)(1,1)(s) = F

∗

(1,1)(s)

×
(

r∗(0,0)(1,0)(s) · r
∗
(1,0)(1,1)(s) + r∗(0,0)(0,1)(s) · r

∗
(0,1)(1,1)(s)

)

.

From Equation (3), we can see that there are two types of Laplace trans-

forms of the kernel, r∗(i,j)(i,j+1)(s) and r∗(i,j)(i+1,j)(s), respectively. The former

one is related to the transition from a state (i, j) with j < m to state (i, j+1),

i.e., the occurrence of an aging-related failure:

r∗(i,j)(i,j+1)(s) =

∫ ∞

0

exp(−st) · fΓ(t;α, βj) · (1− Fexp(t;φi))dt

=

(

βj

βj + φi + s

)α

.
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The latter one is related to the transition from a state (i, j) with i < n to

state (i+ 1, j), i.e., a failure due to a non-aging-related bug:

r∗(i,j)(i+1,j)(s) =

∫ ∞

0

exp(−st) · fexp(t;φi) · (1− FΓ(t;α, βj))dt

=
φi

φi + s
·

[

1−

(

βj

βj + φi + s

)α]

.

If α ∈ N+�{1} we could use partial fraction expansion for inverting

the Laplace transform π∗
zsze

(s) to obtain the transient probability πzsze(t).

However, in general numerical methods are needed. Using the statistical

software R [32] we have implemented the fixed Talbot algorithm [1], which

employs a deformation of the standard contour of the Bromwich integral to

improve convergence.

Based on our model we are thus able to calculate the probability that test-

ing a software initially containing m aging-related and n non-aging-related

bugs for te time units will lead to the detection of j aging-related and i non-

aging-related bugs as the transient state probability π(0,0)(i,j)(te). Deriving

this probability for each combination (i, j) with i = 0, . . . , n and j = 0, . . . , m

results in the joint probability mass function (pmf) of the number of non-

aging-related bugs detected and the number of aging-related bugs detected

by time te.

In Section 2.4, we will use this joint pmf to carry out a model-based

study of the testing phase that will for example indicate the existence of an

interesting masking effect. The joint pmf will also form an important basis

for our analysis of how testing affects the aging behavior in the operational

phase (see Section 4). General insights can thus be gained by using realistic

values of the model parameters, e.g., taken from the literature. However, a

15



practitioner or a researcher may wish to estimate the model parameters for a

specific software product from data collected during the (initial part of the)

testing phase of this product, or during the entire testing phase of a similar

kind of software.

Assume that the data has been observed while testing the software for

t time units. If for each one of the k failures experienced before time t

both the occurrence time tl and the type of the underlying fault gl (where

gl = 1 if the fault is an aging-related bug, and gl = 0 otherwise) are known

(l = 1, 2, . . . , k), then the data set containing all relevant information can

be represented as dt = {(t1, g1), (t2, g2), . . . , (tk, gk), t}. From this, we easily

calculate the number of aging-related bugs and non-aging-related bugs re-

moved after the lth failure occurrence, jl ≡
∑l

u=1 gu and il ≡ l −
∑l

u=1 gu,

respectively. Moreover, the lth time to failure is obtained as xl = tl − tl−1.

Interpreting the joint probability density function of the random variables

of which realizations have been observed as a function of the model param-

eters α, β, φ, n,m given the data set dt leads us to the likelihood function

L(α, β, φ, n,m; dt)

=
k
∏

l=1

[

gl ·
(β (m− jl−1))

α

Γ(α)
xα−1
l exp (−β (m− jl−1)xl) · exp (− (n− il−1)φxl)

+ (1− gl) · φ (n− il−1) exp (−φ (n− il−1)xl) ·
Γ (α, β (m− jl−1) xl)

Γ(α)

]

× exp (−φ (n− ik) (t− tk)) ·
Γ (α, β (m− jk) (t− tk))

Γ(α)
. (5)

This likelihood function consists of two distinct parts:

The first factor, itself a product, is related to the k failure occurrence

times observed. For the lth failure, the addend including gl comes into effect
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if the failure was caused by an aging-related bug; it is the gamma pdf of

the time to the (jl−1 + 1)st failure occurrence due to an aging-related bug,

evaluated at the actual time to failure xl, multiplied with the probability that

none of the n−il−1 non-aging-related faults remaining in the software caused

a failure in these xl time units. Similarly, the addend containing (1 − gl),

connected with a failure due to a non-aging-related bug, is the exponential

pdf of the time to the (il−1 + 1)st failure of this type evaluated at xj and

multiplied with the probability of no aging-related failure occurrence in the

interval (tl−1, tl−1 + xl] = (tl−1, tl]. It is thus crucial to note that each failure

occurrence provides us with two pieces of information: the fact that a bug

of a specific type has led to a failure after a certain amount of time, and

the fact that bugs of the other type have not caused any failure since the

previous failure occurrence. All this information needs to be reflected in the

likelihood function to make full use of the data.

The second factor in Equation (5) is connected with the time between the

last failure occurrence and the end of the observation period. It represents

the probability that neither aging-related nor non-aging-related bugs cause

a failure in these t− tk time units.

The higher the value of the likelihood function for a given combination of

values for α, β, φ, n,m, the higher the possibility that the model with these

parameter values has generated the data actually collected. Maximizing the

likelihood function (or its logarithm) with respect to the parameters results

in the maximum likelihood estimates α̂, β̂, φ̂, n̂, and m̂.
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2.3. Testing phases with more than one testing approach

So far, we have assumed a homogeneous testing phase with constant

parameters α, β and φ. However, it is possible that in an overall testing

phase of duration te various testing approaches (like white-box, black-box,

and operational testing) are consecutively used. Such approaches differ in

their ability to detect aging-related and non-aging-related bugs.

In fact, such a scenario is easily examined based on our previous results.

For example, if during a testing phase testing approach #I (with correspond-

ing parameter values φI , βI and αI) is employed for the first tW time units,

while the software is then tested according to testing approach #II (with

corresponding parameter values φII , βII and αII) for the remaining duration

te−tW , then the probability that i non-aging-related bugs and j aging-related

bugs will have been detected at the end of testing can be calculated as

π(0,0)(i,j)(tW , te) =
∑

i′≤i

∑

j′≤j

πI
(0,0)(i′,j′)(tW ) · πII

(i′,j′)(i,j)(te − tW ), (6)

where πI
(0,0)(i′,j′)(tW ) and πII

(i′,j′)(i,j)(te−tW ) denote transient state probabilities

computed based on the first and second set of parameters, respectively, using

the method presented in the last section.

It is straightforward to extend Equation (6) for a case in which more

than two testing approaches are consecutively used. Moreover, the likelihood

function presented at the end of the last section can easily be adapted for

data collected in testing phases with multiple approaches employed.

2.4. Numerical examples

Assume that at the beginning of the testing phase a software contains

n = 200 non-aging-related bugs and m = 22 aging-related bugs which can
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lead to crash failures. The software is tested using testing approach #I

that implies the rates φI = βI = 0.004 [h−1] for both fault types, and the

parameter αI = 5.2. What are the likely outcomes of a testing phase lasting

te = 750 hours?

The bivariate pmf of the number of non-aging-related bugs removed and

the number of aging-related bugs removed calculated like described in Sec-

tion 2.2 is depicted as a bubble chart in Figure 2; i.e., the area of each bubble

represents the value of the respective probability mass. From this pmf, we

can derive metrics like the expectations and the variances of the marginal

distributions. Here the number of non-aging-related bugs removed has an

expected value of 190.043 and a variance of 9.462; the expectation and vari-

ance of the number of aging-related bugs removed after te = 750 hours are

1.036 and 0.796, respectively.

How the expected value of the (cumulative) number of aging-related bugs

removed develops with test duration te is shown by the solid line in Figure 3.

Obviously, none of the aging-related bugs tend to get detected during the first

400 hours of testing. The reason for this phenomenon lies in the non-aging-

related bugs: As long as many of them are still left in the software, crashes

happen rather frequently, which prevents aging effects to accumulate suffi-

ciently for an aging-related failure to occur. Only later, after a large number

of non-aging-related bugs has been found and removed, are the aging-related

bugs starting to show. The extent to which software aging is masked by the

non-aging-related bugs can also been seen from Figure 3: The dashed line

indicates how the expected number of aging-related bugs removed develops

in the absence of any non-aging-related bugs (i.e., if n = 0, all other param-
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Figure 2: Bivariate pmf after a test duration of te = 750 [h]

eter values remaining unchanged). This example illustrates that we cannot

study the two fault types separately when examining the effects of testing.

Let us now assume that the software is first tested using approach #I for

tW = 650 hours, while the testing approach #II employed for the remaining

te − tW = 100 hours of the testing phase focuses on uncovering aging-related

bugs. For example, if it is known that certain workload parameters have been

especially influential for software aging in similar software or in previous

versions of the software under test [27], then test cases could frequently

use the relevant levels of these workload parameters, aiming at increasing

both the activation rate of the aging-related bugs as well as the aging effect

caused per activation. In terms of our model parameters this is likely to

lead to a larger value of β and a lower value of α. However, putting much
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Figure 3: Expected number of aging-related bugs removed as a function of the test duration

emphasis on constellations potentially contributing to software aging may

impede the rate at which non-aging-related bugs are activated. We therefore

use the parameter values αII = 5.2/3 = 1.733, βII = 0.004 · 3 = 0.012 and

φII = 0.004/2 = 0.002 for modeling testing under approach #II.

Figure 4 shows the bivariate pmf of the number of non-aging-related and

aging-related bugs removed at the end of the overall testing phase, using

the same scale as in Figure 2. Obviously and not surprisingly, when 100

hours are allocated from testing approach #I to approach #II the bivariate

pmf is shifted; it is now more likely that a larger number of aging-related

bugs will be detected during testing (expected value: 10.801), while less non-

aging-related bugs tend to get found (expected value: 187.838). From Figure

4 we can also see that the probability mass is spread over a larger region;
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Figure 4: Bivariate pmf after a test duration of te = 750 [h], switching time tW = 650 [h]

the uncertainty about the outcome, especially with respect to the number of

aging-related bugs removed, has increased.

3. Modeling the system behavior in the operational phase

3.1. Model formulation

We extend the assumptions made by classical models for the operational

behavior of aging software systems [11, 20, 37] to explicitly account for

crashes caused by aging-related and non-aging-related bugs:

A5 After the testing phase, the software still contains m̃ aging-related bugs

and ñ non-aging-related bugs that can lead to crash failures.

A6 From the up state SU , the software system switches into the crash state
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SC due to crash failures caused by aging-related or non-aging-related

bugs.

A7 The time to failure due to aging-related bugs follows a gamma distri-

bution with shape α̃ > 1 and rate m̃β̃.

A8 The time to failure due to non-aging-related bugs follows an exponential

distribution with rate ñφ̃, where φ̃ is the per-fault hazard rate of a single

non-aging-related bug.

A9 The time to recover the system upon a crash follows a general distri-

bution with finite mean hSC
.

A10 While the software system is in state SU , the user or a software agent

triggers software rejuvenation at constant rejuvenation rate τ . The

system then switches into the rejuvenation state SR.

A11 The time to carry out software rejuvenation follows a general distri-

bution with finite mean hSR
. Since software rejuvenation is triggered

deliberately, usually hSR
< hSC

.

We are using the tilde in the parameters α̃, β̃ and φ̃ to point out that their

values are typically different from the ones of the corresponding parameters

in the model for the testing phase.

According to assumptions A5–A11, the stochastic process {Z̃(t), t ≥ 0}

modeling the development of the system state during the operational phase

follows a semi-Markov model with state space Z̃ = {SU , SC, SR}. It is de-

picted in Figure 5. In this diagram, F1OEG(x; ñφ̃, α̃, m̃β̃) denotes the cdf of
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Figure 5: Semi-Markov model for the system behavior in the operational phase

the first order statistic of an exponential distribution with parameter ñφ̃ and

a gamma distribution with parameters α̃ and m̃β̃; i.e.,

F1OEG(x; ñφ̃, α̃, m̃β̃) = 1− (1− Fexp(x; ñφ̃))(1− FΓ(x; α̃, m̃β̃))

= 1− exp(−ñφ̃x) ·
Γ(α̃, m̃β̃x)

Γ(α̃)
.

The corresponding pdf is given by

f1OEG(x; ñφ̃, α̃, m̃β̃) = ñφ̃ · exp(−ñφ̃x) ·
Γ(α̃, m̃β̃x)

Γ(α̃)

+ exp(−ñφ̃x) ·
(m̃β̃)α̃ · exp(−m̃β̃x) · xα̃−1

Γ(α̃)
.

3.2. Deriving steady-state availability

An important metric for evaluating system performance is the steady-

state availability A, which is identical to the steady-state probability that

the system is in the up state SU .

Let Ti denote the time at which the ith transition takes place. Since the

times T1, T2, . . ., constitute renewal points, the stochastic process {Z̃(Ti+), i =

1, 2, . . .} is an embedded discrete-time Markov chain (DTMC) of the semi-

Markov process studied. For three-state operational models with the same
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structure (but different transition distributions), Garg et al. [11] and Vaidya-

nathan and Trivedi [37] have shown that the steady-state probabilities in

their embedded DTMCs are given by π̃d
SU

= 1/2, π̃d
SC

= pSUSC
/2, and

π̃d
SR

= (1− pSUSC
)/2, where pSUSC

represents the transition probability from

state SU to state SC in the embedded DTMC. Based on our model assump-

tions, we have

pSUSC
=

∫ ∞

0

f1OEG(x; ñφ̃, α̃, m̃β̃) · (1− Fexp(x; τ))dx

=
ñφ̃

ñφ̃+ τ
+

τ

ñφ̃+ τ
·

(

m̃β̃

m̃β̃ + ñφ̃+ τ

)α̃

.

To calculate steady-state probabilities related to the semi-Markov model

itself, we additionally require the expected sojourn time hz in each of the

system states z. For the states SR and SC , the mean sojourn times are the

means hSR
and hSC

mentioned in assumptions A9 and A11. For state SU the

cdf of the sojourn time is given by

HSU
(x) = 1− (1− Fexp(x; τ)) ·

(

1− F1OEG(x; ñφ̃, α̃, m̃β̃)
)

= 1− exp(−(τ + ñφ̃)x) ·
Γ(α̃, m̃β̃x)

Γ(α̃)
,

and its expected value amounts to

hSU
=

∫ ∞

0

(1−HSU
(x))dx =

1

ñφ̃+ τ
·



1−

(

m̃β̃

m̃β̃ + ñφ̃+ τ

)α̃


 .
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The steady-state availability is thus obtained as [36, p. 472]

A =
π̃d
SU

· hSU

π̃d
SU

· hSU
+ π̃d

SR
· hSR

+ π̃d
SC

· hSC

=
1−

(

m̃β̃

m̃β̃+ñφ̃+τ

)α̃

1−
(

m̃β̃

m̃β̃+ñφ̃+τ

)α̃

+ hSC
ñφ̃+ hSR

τ + (hSC
− hSR

)τ
(

m̃β̃

m̃β̃+ñφ̃+τ

)α̃
. (7)

Based on this equation, we can examine how changing the rate with which

software rejuvenation is triggered affects the (steady-state) availability. (Since

we do not consider transient availabilities in this paper, we will in the follow-

ing use the terms “steady-state availability” and “availability” interchange-

ably.) Determining the optimal rejuvenation rate (i.e., the rejuvenation rate

for which the availability is maximized), denoted by τ ′, and the maximum

availability attained under this rejuvenation rate, denoted by A′, will gener-

ally require numerical methods.

However, if the aging behavior is characterized with shape parameter

α̃ = 2, which entails a two-stage Erlang distribution like in the work by

Vaidyanathan and Trivedi [37], then it is easily seen from Equation (7), by

differentiating with respect to τ and setting this to zero, that

τ ′ = max

{

0, m̃β̃ ·

(
√

hSC

hSR

− 2

)

− ñφ̃

}

. (8)

If the second value in the above set is smaller than or equal to zero, software

rejuvenation should never be triggered.

3.3. Numerical examples

We first take a look at the real-world example of Apache 2.0, initially

released in a non-alpha version in November 2001. It can be assumed that
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many of the original software faults have meanwhile been reported. For our

availability analysis we are interested in those faults that can make the soft-

ware crash. Similar to Chandra and Chen [3] we query the Apache Software

Foundation bug system at https://issues.apache.org/ for problem reports

containing the keywords “crash”, “segmentation”, “race” and “died”; unlike

Chandra and Chen, we also include inflections of these words (“crashed”,

“crashes”, “races”, “dies”) as well as additional words and their inflections

(“hang”, “hangs”, “hanged”, “segfault”, “segfaults”). From the resulting list

of 39 problem reports we drop one which has been caused by an operator

error and one turning out to be a question on how to use Apache rather

than the description of a failure occurrence. Moreover, 15 reports concern

faults located not in Apache but in the hardware or in some other software

like the operating system Gentoo Linux, the NSS library, OpenSSL or, most

frequently, PHP. In contrast to other studies, e.g., the one by Cotroneo et

al. [5], we wish to classify software faults, not failures. We therefore omit

two further problem reports marked as duplicates and related to the same

faults as other problem reports included in our list. For each one of the 20

unique faults in Apache we then try to determine whether or not it is an

aging-related bug by reading the detailed description of the problem and its

analysis. Whereas Cotroneo et al. [5] deduce the existence of aging-related

bugs from the frequency with which failures occur, we are looking for indi-

cations that the failure rate of a fault increases while the software is contin-

uously running. We find such indications for m̃ = 4 faults and classify them

as aging-related bugs. While the descriptions of three faults contain evidence

concerning the presence of aging effects like progressive memory exhaustion
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or the accumulation of error messages finally causing a failure, the analysis

of the fourth fault suggests that it is activated after a certain number of hits

has been received by the web server since its last restart. The ñ = 16 other

faults are classified as non-aging-related bugs.

Assume that the faults causing crash failures contained in the initial re-

lease of Apache 2.0 were the 20 faults analyzed, that the mean time to reju-

venate the Apache web server is hSR
= 0.5 [h] and that recovering the system

after a crash takes hSC
= 2.75 [h] on average. (These are the parameter val-

ues used in the simulation study by Salfner and Wolter [33].) If the time until

software aging causes Apache to crash follows a two-stage Erlang distribu-

tion, then Equation (8) implies that with respect to availability implementing

software rejuvenation in Apache 2.0 would only have been beneficial if

β̃ >
ñ

m̃ ·
(√

hSC

hSR

− 2
) · φ̃ = 11.587 · φ̃.

It is thus possible that software rejuvenation may not have helped to increase

the availability of Apache 2.0, but a final verdict can only be made after a

more detailed investigation of the failure behavior and the rejuvenation and

recovery times.

However, exclusively focusing on software aging while omitting the effects

of non-aging-related bugs we come to the conclusion that software rejuvena-

tion is beneficial regardless of the rates β̃ > 0 and φ̃. Setting ñ equal to zero,

according to Equation (8) the optimal rejuvenation rate is larger than zero

if
√

hSC

hSR

> 2,

which indeed holds for our parameter values; software rejuvenation should
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thus be employed. This analysis neglects the fact that recovery carried out

after failures caused by non-aging-related bugs removes the internal error

states accumulated, which reduces the need for triggering software rejuvena-

tion. Therefore, scheduling software rejuvenation based on the aging behav-

ior alone can result in suboptimal decisions.

We now turn again to our more hypothetical example. Assume that at the

beginning of the operational phase the software system discussed in Section

2.4 still contains ñ = 2 non-aging-related and m̃ = 20 aging-related bugs.

During operations, software is normally used in a less stressful way than in

the testing phase, and faults therefore tend to cause failures at a lower rate

[30]. We account for this via the parameter values φ̃ = β̃ = 0.0023 [h−1] and

α̃ = 10.4. The mean times to carry out rejuvenation and recovery from a

crash are kept at hSR
= 0.5 [h] and hSC

= 2.75 [h], respectively.

Based on Equation (7), we calculate the availability A attained as a func-

tion of the rejuvenation rate τ . Figure 6 shows that there is a unique optimum

at the rate τ ′ = 0.0047 [h−1], corresponding to a mean time until rejuvenation

is triggered of 213 hours (or 8.9 days). The maximum availability achieved

at this rate is A′ = 0.9807.

4. Combining the models for the testing and the operational phase

4.1. Theoretical considerations

Both our model for the testing phase and our model for the operational

phase explicitly account for the number of aging-related and non-aging-

related bugs. This allows us to combine them in order to study the effects of

testing on the system behavior during usage.
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Figure 6: Availability attained as a function of the rejuvenation rate

For a specific number of non-aging-related bugs ñ and a specific number

of aging-related bugs m̃ remaining in the software we can derive the best

rejuvenation rate τ ′ and the availability A′ attained at this rate with the

model developed in Section 3. To stress that the optimization depends on

ñ and m̃, we will now denote these results by τ ′(ñ, m̃) and A′(ñ, m̃). When

we are trying to evaluate the potential outcomes of a testing strategy at

the beginning of the testing phase, then the number of non-aging-related

and aging-related bugs that will not be detected during testing are random

variables, Ñ and M̃ . The joint pmf of these two random variables can be

computed using the results of Section 2. For example, for a homogeneous

testing phase lasting te time units, the probability that at the end of test-

ing Ñ and M̃ will take the values ñ and m̃ is given by the transient state
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probability π(0,0)(n−ñ,m−m̃)(te). As functions of the random variables Ñ and

M̃ , the optimal rejuvenation rate τ ′(Ñ , M̃) and the maximum availability

attainable A′(Ñ , M̃) are random variables as well. We thus need to discuss

the effects of testing in terms of the distributions of these random variables,

and metrics like their expectations.

The distribution of the optimal rejuvenation rate is obtained as follows:

For each pair of possible outcomes ñ and m̃, calculate τ ′(ñ, m̃) and assign

to this result the probability mass π(0,0)(n−ñ,m−m̃)(te); sorting the results in

ascending order (aggregating for example multiple optimal rejuvenation rates

of zero into a single probability mass) leads to the pmf. By successively

cumulating the probabilities, the cdf is obtained. We have automated this

procedure, again using the statistical software R [32]. Based on the same

kind of approach we also derive the pmf and cdf of the maximum availability

attainable.

Similarly, the expectations of these random variables can be calculated

by weighting each result τ ′(ñ, m̃) or A′(ñ, m̃) with the respective probability

mass π(0,0)(n−ñ,m−m̃)(te):

E[τ ′(te)] =
n
∑

ñ=0

m
∑

m̃=0

τ ′(ñ, m̃) · π(0,0)(n−ñ,m−m̃)(te), and

E[A′(te)] =

n
∑

ñ=0

m
∑

m̃=0

A′(ñ, m̃) · π(0,0)(n−ñ,m−m̃)(te).

Note that both expected values depend on the testing duration te. This allows

us for example to examine how varying the length of the testing period affects

the expected maximum availability achievable during operations.

Of course, due to fixed release dates or funding constraints software devel-

oping companies cannot arbitrarily extend the testing period. Rather, they
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have to solve the problem of allocating their limited time budget to various

testing approaches such that the quality of the software will be as good as

possible under the given circumstances.

In Section 2.3 we have seen how to compute the transient state prob-

abilities at the end of a testing phase in which several testing approaches

are consecutively used. While we will again focus on a scenario with two

testing approaches, an extension to a larger number of approaches can eas-

ily be made. Each transient state probability π(0,0)(i,j)(tW , te) calculated via

Equation (6) is a function not only of the overall test duration te, but also

of the time tW when testing switches from the first approach to the second

one. Therefore, the distributions of the optimal rejuvenation rate τ ′ and the

maximum availability attainable A′ depend on tW as well. For a given test

duration te we can thus for example analyze how the expected value of the

latter distribution, E[A′(tW , te)], develops as tW varies between zero and te;

while tW = 0 means that the second testing approach is used throughout

the entire testing phase, in the limiting case tW = te only the first testing

approach is employed. The optimal switching time is the one resulting in the

highest expected maximum availability attainable.

4.2. Numerical examples

Consider again the example analyzed in Section 2.4 of a software initially

containing n = 200 non-aging-related and m = 22 aging-related bugs, tested

with approach #I implying the parameters αI = 5.2 and βI = φI = 0.004

[h−1]. We now examine the effect of different testing durations te on the

aging behavior in the operational phase, for which we assume the parameter

values α̃ = 10.4 and φ̃ = β̃ = 0.0023 [h−1] already used in Section 3.3. Note
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Figure 7: Cdf of the optimal rejuvenation rate for different testing durations

that βI/β̃ = φI/φ̃ can be interpreted as the testing compression factor (TCF)

of testing approach #I, i.e., the ratio of the execution times needed in the

operational phase and the testing phase using this approach, respectively, to

cover the entire input domain of the software [30, p. 178]. In fact, we chose

the parameter values β̃ and φ̃ based on those for testing approach #I as

βI/TCF and φI/TCF, making use of the TCF = 1.72 determined by Huang

and Lin [19] in their analysis of an electronic switching software system.

Figure 7 shows the cdf of the optimal rejuvenation rate τ ′ for three dif-

ferent testing durations.

At a testing duration of te = 500 [h] the entire probability mass of the

distribution is located very close to zero; the expected value of τ ′ amounts

to 1.35 · 10−11 [h−1]. For all practical purposes, software rejuvenation should
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never be triggered. The reason for this result is the fact that with high

probability many non-aging-related bugs will remain in the software after

such a short testing phase, frequently causing crashes during operations.

Therefore, aging effects cannot build up sufficiently for creating a high risk

of aging-related failures. Software rejuvenation thus has hardly any positive

effects, but it mainly causes the system to be unavailable until rejuvenation

has been completed.

However, after testing the software for te = 1500 [h] it is likely that many

of the non-aging-related bugs have been removed. It is thus indeed beneficial

to regularly rejuvenate the system in the operational phase in order to prevent

failures due to the aging-related bugs remaining. The expectation of the

optimal rejuvenation rate is 0.00538 [h−1], which means that the running

system should on average be rejuvenated every 7.7 days.

If testing is to last te = 2500 [h], then not only many non-aging-related

bugs but also many of the aging-related bugs will have been removed with

high probability. Therefore, rejuvenation should again be triggered at a lower

rate: The expected optimal rejuvenation rate is now 0.00306 [h−1], relating

to a mean time of 13.6 days until rejuvenation is triggered in the up state.

From Figure 7 we can also see that the probability mass is spread over a

smaller range of values of τ ′ than in the case te = 1500, indicating a higher

certainty about the outcome of the longer testing phase.

This example suggests that software rejuvenation should be triggered

most frequently during the usage of “semi-tested” software. For both insuf-

ficiently-tested as well as highly mature software the optimal rejuvenation

rate tends to be lower.
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Figure 8: Pmf of the optimal rejuvenation rate for a test duration of te = 1500 [h]

Unlike the cdfs of the optimal rejuvenation rate for various test durations,

the related pmfs can hardly be plotted in the same diagram, because the bars

tend to overlay. However, from the pmf representation the expected value

of a random variable may be seen more easily, and it may also yield further

insight.

As an example we show the pmf of the optimal rejuvenation rate for

te = 1500 [h] in Figure 8. For τ ′ > 0.0005, the distribution mainly seems to

be a mixture of three individual unimodal distributions with local maxima at

around 0.0019, 0.0042, and 0.0065. In fact, these individual distributions are

related to the events of two, one and zero non-aging-related bugs remaining

in the software in the operational phase, respectively. Within each one of

these distributions, the τ ′-values with non-zero probabilities are not exactly
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evenly-spaced, but the distances between them often range between 0.00045

and 0.00050; starting with a given number of aging-related bugs remaining

(m̃ > 0) and non-aging-related bugs remaining (0 ≤ ñ ≤ 2), removing one

more of the aging-related bugs tends to decrease the optimal rejuvenation

rate by such an amount.

The cdfs of the maximum availability attainable for te = 500, 1500 and

2500 [h] are depicted in Figure 9, separated into two plots due to the differ-

ences in magnitude between the three cases. Obviously, longer test durations

are stochastically dominant with respect to the optimal availability: The

longer the system has been tested, the higher the probability that a given

target availability can be exceeded during operations.

This result is also reflected by the development of the expected maximum

availability attainable E[A′(te)] as a function of testing duration te, shown

in Figure 10. The values E[A′(500)] = 0.8530, E[A′(1500)] = 0.9911 and

E[A′(2500)] = 0.9970 in this plot are simply the expected values of the three

distributions in Figure 9. Not surprisingly, the function is strictly increasing

and converges to an availability of 100% for an infinite test duration. While

the expected maximum availability attainable grows almost linearly for the

first 500 hours, the slope of the function then quickly decreases, indicating a

diminishing effect of each further hour spent on testing.

The fact that the parameters of the failure distributions are neither ob-

served nor known with certainty, but estimated from experience or collected

data, begs the question: How much are these results affected if the param-

eter values change? For example, what happens if the aging-related and

non-aging-related bugs are more (less) virulent than expected? It seems rea-
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sonable to assume that more (less) virulent faults tend to get activated at a

higher (lower) rate during both the testing and the operational phase. We

thus keep the testing compression factor constant at 1.72, and study by how

much the expectations of the optimal rejuvenation rate and the maximum

availability attainable change for a testing duration of te = 1500 [h] as β and

φ are varied within the interval [0.003, 0.005], marking a decrease or increase

of up to 25 percent from the original value 0.004.

Figure 11 shows the results for the expected optimal rejuvenation rate,

which tends to exhibit positive relationships with the activation rates of

both fault types in the region analyzed. As φ increases, more of the non-

aging-related bugs are expected to be detected during testing; therefore,

aging effects can build up to a higher degree during operations, making more

frequent rejuvenation worthwhile. Keeping β fixed at 0.004 and varying

φ within the given interval leads to values of E[τ ′(1500)] between 0.00364

and 0.00560. While the most extreme decrease from the original expected

optimal rejuvenation rate 0.00538 is slightly overproportional (−32.3%), the

maximum increase is substantially underproportional at a mere +4.1%.

For a fixed φ, within the interval [0.003, 0.005] an increase in β leads to a

higher expected optimal rejuvenation rate. Although the aging-related bugs

become more virulent only relatively few additional ones tend to be found

during testing due to the masking effect of the non-aging-related bugs; in-

stead, this higher virulence means stronger aging effects in the operational

phase, requiring more frequent rejuvenation. At φ = 0.004, a 25-percent de-

crease or increase in β results in underproportional variations in E[τ ′(1500)],

which ranges from 0.00455 (−15.4%) to 0.00580 (+7.8%).
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Figure 12: Expected maximum availability attainable after te = 1500 hours of testing as
a function of β and φ

Figure 11 indicates that these effects may aggravate. If both β and φ

happen to be 25 percent smaller than assumed, then the expected opti-

mal rejuvenation rate amounts to 0.00269, which is 50 percent less than

the value originally obtained. However, in the [0.003, 0.005]× [0.003, 0.005]-

region studied for β and φ the maximum resulting value of E[τ ′(1500)] is

0.00592, corresponding to an increase of only 10.0%. Moreover, if the direc-

tions of deviation are different for the activation rates of the two fault types,

then the effects tend to cancel.

From Figure 12 we can see that for the range of parameter values analyzed

a higher virulence of the non-aging-related bugs leads to a higher expected

maximum availability attainable (because more of these bugs tend to get

removed during testing), whereas E[A′(1500)] gets smaller as the virulence of
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Figure 13: Expected maximum availability attainable as a function of switching time

the aging-related bugs increases (since the masking effect prevents detection

of these bugs during testing from improving considerably, while the aging

effects experienced during operations become more severe). In terms of the

expected maximum availability attainable, the extent of variation due to

changes in β and φ is less pronounced than the one for E[τ ′(1500)]: Within

the region studied, the smallest E[A′(1500)] obtained is 0.9837 (−0.7%), and

the largest value amounts to 0.9942 (+0.3%).

Let us now assume that there is a time budget of te = 1500 hours available

for testing, which can be allocated to the two approaches already discussed

in Section 2.4. When, if at all, should we ideally switch from approach #I

to approach #II during the testing phase?

In Figure 13 it can be seen how the expected maximum availability attain-
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able, E[A′(tW , 1500)], changes with the switching time over its entire possible

range from tW = 0 to tW = 1500. The value E[A′(1500, 1500)] relates to the

expected outcome if solely testing approach #I is employed for the entire 1500

hours; from the above, we already know that E[A′(1500, 1500)] = 0.9911.

Clearly, the function has a unique maximum, which is attained for a switch-

ing time of tW = 1287.2 [h]: Using approach #I for 1287.2 hours instead

of 1500 hours, and spending the remaining 212.8 hours on testing the soft-

ware following approach #II increases the expected maximum availability

attainable from 0.9911 to 0.9941.

5. Conclusions

In this paper we have developed semi-Markov models for the testing phase

and the operational phase which (unlike existing models) explicitly account

for aging-related bugs and non-aging-related bugs. From the assumptions

of the operational model, we have derived a closed analytical expression for

steady-state availability. For the testing model, we have formulated closed

analytical expressions for the Laplace transforms of the transient state prob-

abilities, and implemented an appropriate algorithm for numerical Laplace

transform inversion. Based on these models we have detected a masking of

software aging by non-aging-related failures for both the testing phase and

the operational phase. While the existence of such a masking effect may be

obvious (at least at hindsight), to the best of our knowledge it has never been

discussed in the literature. What is more, we have seen that neglecting the

masking effect will lead to wrong conclusions and suboptimal decisions.

We have also shown how the two models can be used in combination for

examining the influence of testing on the aging behavior during usage. We
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do not know any previous work investigating such effects. In particular, we

have seen that the analysis requires models for both phases that explicitly

keep track of aging-related and non-aging-related bugs. Moreover, before

the testing phase has ended the optimal rejuvenation rate and the maximum

availability attainable in the operational phase are random variables; the

analysis should thus be based on the distributions and moments of these

random variables. The numerical example discussed by us suggests that

software rejuvenation should be triggered most frequently for “semi-tested”

systems rarely suffering from crashes due to non-aging-related bugs but still

containing a moderate number of aging-related bugs.

While our models are based on some simplifying assumptions we are con-

fident that the general insights obtained will not be affected if any of these

assumptions is refined. In fact, our approach allows to easily make such

adaptations due to its generic and modular nature.

We hope that our demonstration that non-aging-related bugs should not

be neglected when studying software aging will induce practitioners and re-

searchers to collect and publish data sets containing both failure times and

the type of each underlying fault.
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[35] Suzuki, H., Dohi, T., Goševa-Popstojanova, K., Trivedi, K. S., 2002.

Analysis and estimation of multi-step failure models with periodic soft-

ware rejuvenation. In: Artalejo, J. R., Krishnamoorthy, A. (Eds.), Ad-

vances in Stochastic Modelling. Notable Publications, Neshanic Station,

pp. 85–108.

[36] Trivedi, K. S., 2001. Probability and Statistics with Reliability, Queuing,

and Computer Science Applications, 2nd Edition. Wiley, New York.

[37] Vaidyanathan, K., Trivedi, K. S., 2005. A comprehensive model for

software rejuvenation. IEEE Trans. Dependable and Secure Computing

2 (2), 124–137.

48

http://www.R-project.org

	1 Introduction
	2 Modeling the testing phase
	2.1 Model formulation
	2.2 Deriving transient state probabilities
	2.3 Testing phases with more than one testing approach
	2.4 Numerical examples

	3 Modeling the system behavior in the operational phase
	3.1 Model formulation
	3.2 Deriving steady-state availability
	3.3 Numerical examples

	4 Combining the models for the testing and the operational phase
	4.1 Theoretical considerations
	4.2 Numerical examples

	5 Conclusions

