
In Proc. IEEE International Conf. on Industrial Engineering and Engineering Management, pages 1386–1390, 2009. © IEEE 1386

 Abstract – The quality cost concept is well known in
production economics. Recently, it has received a lot of atten-
tion in the field of software engineering. However, empirical
studies of the association between failure costs and conform-
ance quality have only been conducted for closed source
software projects, but not for open source projects. This
paper addresses this research gap. On the one hand, our
analysis revalidates findings from production economics. On
the other hand, it extends the limited empirical knowledge in
the software quality cost research domain.

Keywords – Conformance quality, empirical analysis,

failure costs, open source software, production economics

I. INTRODUCTION

 For decades, users of software solutions have been
suffering from poor solution quality [1]. Despite the tre-
mendous effort spent on software quality improvement,
more than half of all faults (also referred to as defects) are
still not found during testing, but after shipment [2]. A
2002 study concludes that software faults not found due to
an inadequate testing infrastructure account for annual
economic damages of 38 billion dollars in the U.S. alone
[3]. High complexity and tight development schedules are
often seen as the main reasons for the large percentage of
faults remaining in the released software product [4].
 New software engineering approaches may help to
overcome the quality challenge. Open source software
(OSS) development is one of the approaches that have re-
cently gained significance. It is receiving more and more
interest in the research community; some researchers even
consider it the next big software development paradigm
[5]. However, the OSS development approach is still not
fully understood. Some aspects, such as the economics of
OSS development [6] or learning in OSS projects [7], have
already been addressed sufficiently. Others, such as quality
costs in OSS projects, have received less attention.
 The goal of this paper is to address this research gap.
We study the association between conformance quality
(i.e., the conformance of a software product with its
requirements) and failure costs (i.e., the quality costs caus-
ed by failure report processing and fault removal after the
software has been released) in OSS projects. By this, we do
not only revalidate findings from closed source projects
and production economics, but we also extend the limited
knowledge in the software quality cost research domain.

 The remainder of this paper is structured as follows: In
Section II, we develop our research framework and
hypothesis. Section III presents the research site, the data
collection procedure, and the model estimates. We
interpret the results in Section IV and close the paper with
Section V, providing directions for further research.

II. CONFORMANCE QUALITY & FAILURE COSTS

A. Theoretical Background

 The cost impact of quality was first realized during the
1930s in industrial engineering [8]. Since then, the quality
cost concept has been adopted by many engineering disci-
plines. In the 1980s, software engineers began conducting
research on the concept, but the challenge of adjusting it to
the characteristics of software development is still being
faced [9]. Consistent with definitions from industrial engi-
neering, software quality costs are defined as the costs
“incurred in the pursuit of [software conformance] quality
or in performing quality-related activities“ [10], p. 196.
According to cost accounting, quality costs can further be
structured by different classification schemes. If any is
used at all, the PAF (prevention, appraisal, and failure) cost
scheme seems to be the one most commonly applied to
software development [10, 11]. It distinguishes between
three activity types (and corresponding quality cost
categories) [10]:

• Prevention activities, such as quality planning and
training;

• appraisal activities, such as testing, control, and
measurement; and

• failure-related activities, such as rework, failure
mode analysis, and corrective maintenance. (Note
that we do not distinguish between internal and
external failure costs.)

 While the concept of quality costs is well known in the
field of software engineering, only few empirical studies
investigating the association between conformance quality
and software quality costs can be found in the literature[12,
13]. This is in contrast to industrial engineering, where
empirical studies are regularly published [14]. One reason
for the small number of software-related studies might be
the limited availability of software quality cost data in

Conformance Quality and Failure Costs in the Software Industry:
An Empirical Analysis of Open Source Software

Lars M. Karg1,2, Michael Grottke2, Arne Beckhaus1
1SAP Research, Darmstadt, Germany

2University of Erlangen-Nuremberg, Nürnberg, Germany

In Proc. IEEE International Conf. on Industrial Engineering and Engineering Management, pages 1386–1390, 2009. © IEEE 1387

companies, as well as the fact that researchers often do not
obtain access to those data that companies collect.
Moreover, to be widely applicable in software develop-
ment, the PAF classification scheme needs further adapta-
tion [11]. While for most other engineering disciplines at
least a basic discipline-adjusted quality cost scheme is
available, there is no such tailored scheme for software
engineering [15].
 It is widely accepted by research and practice that the
largest part of the quality costs in software development
falls into the failure costs category. Therefore, these costs
are of special interest in the continuing debate of software
quality costs [9, 16]. Nevertheless, empirically grounded
understanding of factors influencing failure costs is still
limited [12, 13].
 In software development, failure costs are mostly
driven by the effort spent on processing failure reports and
removing the underlying faults in the source code. Other
failure-related costs, such as those that typically occur for
manufactured products, are of less cost concern, because
software is a digital product: In contrast to physical
products, most of its parts can be changed after develop-
ment with relatively little effort [17]. In addition, costs due
to damages at the user-side account for (external) failure
costs; however, they are often hidden and thus cannot
easily be measured. Therefore, studies often exclude them
or estimate them by rule of thumb [18]. In the following,
we thus understand software failure costs as the costs
associated with the processing of failure reports and the
fixing of faults.

B. Research Framework

 According to the previously developed understanding,
we model failure costs (Costs) as a function of the
delivered software conformance quality (Quality) as well
as several control variables (see Fig. 1):

)variablescontrol,Quality(Costs f=

 Literature suggests a strong negative association
between conformance quality and failure costs [12, 13, 19,
20]. With improving conformance quality, the number of
faults in a software product decreases; assuming that at a
lower fault density the complexity and virulence of the
existing faults is not higher, this implies a reduction in
failure costs. In accordance with prior research, we
therefore formulate the following hypothesis:

Higher conformance quality is associated
with lower software failure costs.

 Our model controls for several important influences.
Prior empirical research has suggested that product size has
a significant influence on developer performance [21]: As
a software product grows in size, its complexity increases
dramatically, making it more difficult for a developer to
understand its dependencies.

Project Performance Failure Costs

Conformance
Quality

Failure Processing
& Fault Correction

Control Variables

Functional Size

Team Size

Age

Fig. 1. Conceptual Framework.

This effect increases the necessary effort to comprehend
the cause of a software failure and to fix the related fault.
 One effect of the collaborative software development
process can be observed at team level. Previous studies
have shown that software development performance can be
negatively associated with team size and its dispersion
[22]: Larger teams tend to require higher coordination
effort, which increases even more strongly if development
is distributed or – in the case of OSS – virtually distri-
buted. It seems reasonable to expect such an effect for the
processing of failures and the fixing of faults as well.
 The last control variable in our model is the age of the
project: It can be assumed that over time experience on
how to process failure reports and to fix faults effectively
is accumulated in a project [21].

III. METHODOLOGY

A. Research Site and Data Collection

As most prior empirical studies on OSS development

projects, we collected the data from SourceForge.net. At
the end of March 2009 (the time we conducted our study),
SourceForge.net hosted more than 140,000 OSS projects,
thus being the world's largest repository. Besides mere
storage, SourceForge.net offers a useful set of services to
manage the OSS development process, including bug
tracking and mailing lists. Many of the hosted projects use
these free services and thus store data of their development
process on the SourceForge.net servers. In line with the
open source philosophy of the hosted software sources and
products, these process data are made available to the
research community. The large sampling population and
the wealth of available data per project make
SourceForge.net the ideal site to collect data for research
on the OSS development process [23].

For the purpose of investigating the association
between conformance quality and failure costs, we
primarily rely on the data related to three SourceForge.net
services:

In Proc. IEEE International Conf. on Industrial Engineering and Engineering Management, pages 1386–1390, 2009. © IEEE 1388

1. the repository itself (to access the source code of
each considered project);

2. the bug tracker (to gather basic information about
each reported failure, such as processing time);

3. and the general project statistics (to collect project
statistics such as team size).

Not all projects hosted at SourceForge.net are suitable
for our study: Some do not make use of the bug tracker,
which prevents us from calculating processing times, while
others are in alpha state and have not yet released a stable
version of their software source and product. In addition,
like all empirical studies our study depends on the compa-
rability of the objects under investigation. In order to
ensure comparability, we followed a strict selection
process.

First, we manually selected and extracted the first 250
OSS projects listed under the non-exclusive categories
‘Enterprise’ and ‘Financial’ in the SourceForge.net
software map. After removing duplicates classified under
both categories, our set contained 483 unique projects.

Second, we ranked these 483 projects by two criteria:
development activity, which is a metric calculated by
SourceForge.net expressing how active the project is, and
the number of downloads, another metric provided by
SourceForge.net. Based on these two criteria, we removed
129 projects of low activity or usage, resulting in a set of
354 projects.

Finally, we ensured that all projects have a develop-
ment status of at least 5 indicating high process and pro-
duct maturity, that at least 5 developers are registered with
the project, and that the bug tracker is actively used. The
first two criteria were verified based on measures provided
by SourceForge.net; for the third one we manually checked
the bug tracker.

Following this three-step approach, we composed a
final set of 32 comparable projects suitable for our study.

B. Variable Measurement

The conformance quality (Quality) of a software

product is measured as the software size in lines of code
(LOC) divided by the number of failures reported by users
in the bug tracking system. This measure is similar to the
ones used in previous studies [12, 22]. Since different
programming languages are employed across projects, we
use the SLOCCount tool to guarantee a consistent measure
(see http://www.dwheeler.com/sloccount).

As discussed in the previous section, in software
development most of the failure costs (Costs) are caused
by failure report processing and fault removal. Thus, the
effort spent on these activities seems to be a good proxy
for failure costs. However, for OSS projects’ failure
processing effort is hardly ever reported. As an example,
consider the well-known and professionally managed
JBoss project: For only about 6% of all failure reports,
effort data are available [24]. Even worse, no effort data at
all are provided for projects hosted on SourceForge.net. In

consequence, we were not able to use the actual processing
effort. We instead relied on the processing time inferred
from the bug tracker as a proxy for failure costs: We
calculated the processing time of a single failure as the
time span (in minutes) between the initial report and its
final closure, and the total failure costs of a project as the
sum of the processing times of all reported failures. Of
course, this metric can only be expressive if the bug tracker
is actively used–our selection process (described in the last
section) has helped to ensure this property.

As mentioned above, our model also includes a
number of control variables. Since different OSS projects
utilize different programming languages, we could not
simply use the LOC to control for functional size
(FuncSize). For each project, we therefore used the
conversion table provided in [25] to convert the LOC
measured with the SLOC Count tool into function points .
This approach resulted in functional size measures
comparable across the 32 projects.

Team size (TeamSize) is given by the number of
people involved in the project according to the
SourceForge.net project statistics. This measure is derived
from explicit registrations with a project and therefore
represents the core team, while the periphery of occasional
bug reporters is ignored [22].

Age measures the number of minutes since a project
was registered at SourceForge.net. This variable helps to
control for virtual organizational learning effects [7].

C. Empirical Analysis and Results

Prior empirical research on software engineering

economics recommends a log-linear model of project per-
formance [21, 22]. The log transformation ensures that all
estimated cost values are positive. Additionally, the fact
that economics of scales have been observed suggests that
a log-linear model may indeed be adequate [21, 22]. We
therefore propose the following model:

All of the following analyses were conducted with the

statistical software package R [26].
We first used Ramsey's RESET [27] to test the ad-

equacy of our model; no misspecification was detected.
We then estimated the model parameters via the ordinary
least squares (OLS) approach. Next, we performed several
specification checks for the estimated model to ensure that
the OLS assumptions are satisfied. The visual examination
of the residual plot and the DFFIT measure by Welsch and
Kuh indicated no influential observation.
 We checked for the presence of multicollinearity using
variance inflation analysis. Variation inflation factors
(VIF) above 5.3 indicate possible problems due to
multicollinearity [28].

.)Ageln()TeamSizeln(
)FuncSizeln()Qualityln()Costsln(

43

210

εββ
βββ

+⋅+⋅+
⋅+⋅+=

In Proc. IEEE International Conf. on Industrial Engineering and Engineering Management, pages 1386–1390, 2009. © IEEE 1389

For our explanatory variables, the VIF values ranged from
1.41 to 3.82, with a mean VIF of 2.37; we therefore
concluded that multicollinearity is not a serious issue in
our analysis. The Shapiro-Wilk test was not able to reject
the normality assumption of the model residuals at the 5%
significance level. The violation of the homoscedasticity
assumption was indicated neither by the Breusch-Pagan
test nor by the White test [28].
 Table I shows the resulting parameter estimates. We
find strong support for our hypothesis that higher levels of
conformance quality in OSS development projects are
associated with lower failure costs. The results further
indicate that, as expected, functional size has a significant
adverse effect on failure costs. Since the regression
coefficients in the log-linear model denote elasticities, a
1% increase in conformance quality is associated with
about a 0.83% decrease in failure costs, whereas a 1%
increase in functional size is associated with about a 0.80%
increase in failure costs. The coefficient for project age is
significant at a type I error level of 5%: An increased age
tends to be associated with higher failure costs. No
significant association between team size and failure costs
could be observed.

IV. DISCUSSION

 The results support our initial hypothesis that higher
conformance quality is linked with lower failure costs. We
thus revalidate the findings from closed source projects and
production economics research [12, 13, 19, 20] and extend
them to OSS projects.
 As argued in Section II.B and evidenced in prior
studies, functional size has a strong influence on project
performance [21, 22]. Our study reveals that functional

size has a significant impact on failure costs: As software
size grows, failure costs increase. This can be explained by
the fact that the functional size of a software product is
related to its complexity. When a software grows in size, it
tends to become more complex and hence more difficult to
understand for a developer [21]. The difficulties in under-
standing software source code are rooted in the limited
cognitive abilities of humans. Any human, regardless of his
or her experience and knowledge, can only process and
interpret a certain amount of information at once [21]. This
implies that it takes a developer more effort to locate and
understand the root of a software fault if the functional size
is larger. Moreover, as the functional size increases the
fault density of a software product often increases as well
[12, 13]. As a consequence, there is a super-linear increase
in the number of faults. Higher functional complexity,
resulting in more faults that are more difficult to deal with,
thus leads to higher failure costs.
 Our study further indicates that team size is not
significantly associated with failure costs. This finding is
in contrast to prior studies reported in the software
engineering literature [21, 22]. There, especially in the
context of closed source commercial software development
projects, team size was identified to have a significant
influence on project performance during development and
maintenance [21, 22]. The results of our study suggest
something different for OSS development projects. It
seems that team size does not have any negative effect on
project performance. This may be explained by several
facts: First, all team members are virtually distributed;
hence there may be a higher awareness of potential
problems in the collaboration process, and techniques for
preventing them. Second, SourceForge.net offers a broad
range of services supporting collaborative software
development. Third, OSS teams are often composed of
very talented developers far above average, which helps
compensate negative performance effects [6].
 The positive influence of age on failure costs seems
unexpected if age is considered a proxy for virtual
organizational learning [7]. One might assume that due to
learning effects for longer-running projects higher age is
associated with lower failure costs. In our study, this does
not seem to be the case. A plausible explanation for our
finding can be given when taking into account that in OSS
projects developers tend to join and leave frequently [6].
The extent of learning on the part of the team members is
therefore limited. Even worse, prior research has shown
that in long-running projects, the software code gets
increasingly complex and more difficult to maintain. This
effect is sometimes referred to as software aging [29].
(However, note that the term “software aging” is not used
consistently across research communities [30].) In an un-
stable team environment, the effort for understanding and
correcting faults thus increases with project age, and so do
failure costs.

TABLE I
OLS REGRESSION RESULTS

Variable Estimate t value

(Intercept) 5.5183 1.673 (3.2986)

Conformance Quality -0.83162 -5.867 *** (0.14173)

Functional Size 0.79858 3.776 *** (0.21150)

Team Size 0.05469 0.443 (0.12346)

Age
0.64388

2.081 * (0.30948)

R-squared: 0.6557 Adj. R-squared: 0.6047

F statistic: 12.8532 p value < 0.0001

Note: *: significant at 5%; ***: significant at 0.1%;
Standard errors are given in brackets.

In Proc. IEEE International Conf. on Industrial Engineering and Engineering Management, pages 1386–1390, 2009. © IEEE 1390

V. CONCLUSIONS

 In this paper, we have analyzed whether or not
conformance quality and failure costs are associated in
open source software projects. Our empirical results
indicate that lower failure costs are linked with higher
conformance quality and with smaller functional size of the
software product. This is consistent with prior research and
shows that the principles of production economics also
hold for the growing field of OSS development. Increased
project age tends to be linked to higher failure costs,
whereas team size does not show any significant associa-
tion with failure costs.
 Of course, our study may have some limitations. We
tried to ensure validity by relying on measures used in
prior studies. However, better proxies than the ones chosen
might exist. Another limitation could be the rather small
sample size, although a set of around 30 observations is
common in the field of production economics.
 Further research should especially be devoted to the
concept of project age/organizational learning. Being used
as a control variable, this concept showed an unexpected
(albeit weak) association with failure costs. In production
economics, organizational learning has been proven to
exert a strong positive impact on project performance. It
would therefore be interesting to investigate these potential
peculiarities of open source software development projects.

REFERENCES

[[1] J. A. Whittaker and J. M. Voas, “50 years of software: Key
principles for quality,” IT Professional, vol. 4, no. 6, pp. 28-
35, 2002.

[2] P. Middleton and J. Sutton, Lean Software Strategies: Prov-
en Techniques for Managers and Developers, New York:
Productivity Press, 2005.

[3] RTI, “The economic impacts of inadequte infrastructure for
software testing,” National Institute of Standards and
Technology, Gaithersburg, Planning Report 02-3, 2002.

[4] B. Boehm and V. R. Basili, “Software defect reduction top
10 list,” IEEE Computer., vol. 34, no. 1, pp. 135-137, 2001.

[5] G. von Krogh and E. von Hippl, “The promise of research
on open source software,” Management Science, vol. 52,
no. 7, pp. 975-983, 2006.

[6] J. Bitzer and P. J. Schroder, The Economics of Open Source
Software Development, Wakefield: Emerald, 2006.

[7] Y. A. Au, D. Carpenter, X. Chen, and J. G. Clark, “Virtual
organizational-learning in open source software develop-
ment projects,” Information & Management, vol. 46, no. 1,
pp. 9-15, 2009.

[8] H. G. Crokett, “Quality, but just enough,” Factory Manage-
ment & Maintenance, vol. 93, no. 6, pp. 245-246, 1935.

[9] L. M. Karg and A. Beckhaus, “Modelling software quality
costs by adapting established methodologies of mature in-
dustries,” in Proc. 2007 IEEE IEEM, pp. 267-271, 2007.

[10] R. S. Pressman, Software Engineering: A Practitioner's
Approach, 6th ed., New York: McGraw-Hill Professional,
2001.

[11] D. Galin, Software Quality Assurance: From Theory to Im-
plementation, Harlow: Pearson Education Limited, 2004.

[12] S. A. Slaughter, D. E. Harter, and M. S. Krishnan, “Evalu-
ating the cost of software quality,” Communications of the
ACM, vol. 41, no. 8, pp. 67-73, 1998.

[13] N. Ramasubbu and R. K. Balan, “Globally distributed
software development project performance: an empirical
analysis,” in Proc. ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pp. 125-134, 2007.

[14] A. R. T. Williams, A. Wiele, and B. G. Dale, “Quality
costing: A management review,” International Journal of
Management Reviews, vol. 1, no. 4, pp. 441-460, 1999

[15] W.-H. Tsai, “Quality cost measurement under activity-based
costing,” International Journal of Quality & Reliability
Management, vol. 15, no. 7, pp. 719-752, 1998.

[16] M. Grottke and C. Graf, “Modeling and predicting software
failure costs,” in Proc. 33rd Annual IEEE Computer Soft-
ware and Applications Conference, pp. 180-189, 2009.

[17] D. G. Messerschmitt and C. Szyperski, Software Ecosystem:
Understanding an Indispensable Technology and Industry,
Cambridge: MIT Press, 2003.

[18] T. L. Albright and H. Roth, “The measurement of quality
costs: an alternative paradigm,” Accounting Horizons, vol. 6,
no. 2, pp. 15-27, 1992.

[19] L. P. Carr and L. A. Ponoemon, “The behavior of quality
costs: classifying the confusion,” Journal of Cost Manage-
ment Practices, vol. 8, no. 2, pp. 26-34, 1994.

[20] V. K. Omachonu, S. Suthummanon, and N. G. Einspruch,
“The relationship between quality and quality cost for a
manufacturing company,” International Journal of Quality
& Reliability Management, vol. 21, no. 3, pp. 277-290,
2004.

[21] R. D. Banker, G. B. Davis, and S. A. Slaughter, “Software
development practices, software complexity, and software
maintenance performance: A field study,” Management
Science, vol. 44, no. 4, pp. 433-450, 1998.

[22] N. Ramasubbu, S. Mithas, M. S. Krishnan, and C. F. Keme-
rer, “Work dispersion, process-based learning, and offshore
software development performance,” MIS Quarterly, vol.
32, no. 2, pp. 437-458, 2008.

[23] J. Wu, K. Y. Goh, and Q. Tang, “Investigating success of
open source software projects: A social network perspec-
tive,” in Proc.28th International Conference on Information
Systems, pp. 1-16, 2007.

[24] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How
long will it take to fix this bug?,” in Proc. 4th International
Workshop on Mining Software Repositories, p. 1, 2007.

[25] QSM. "Function point languages table," Version 3.0, 2005.
Available: http://www.qsm.com/FPGearing.html

[26] R Development Core Team, R: A Language and Environ-
ment for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2009.

[27] J. B. Ramsey, “Tests for specification errors in classical
linear least squares regression analysis,” Journal of the
Royal Statistical Society. Series B (Methodological), vol. 31,
no. 2, pp. 350-371, 1969.

[28] W. H. Greene, Econometric Analysis, 6th ed., Upper Saddle
River: Pearson Prentice Hall, 2008.

[29] D. L. Parnas, "Software aging," in Proc. 16th International
Conference on Software Engineering, pp. 279-287, 1994.

[30] M. Grottke and K. S. Trivedi, "Software faults, software
aging and software rejuvenation," Journal of the Reliability
Engineering Association of Japan, vol. 27, no. 7, pp. 425-
438, 2005.

	II. CONFORMANCE Quality & Failure CostS
	A. Theoretical Background
	Conformance Quality and Failure Costs in the Software Industry: An Empirical Analysis of Open Source Software
	B. Research Framework
	A. Research Site and Data Collection
	B. Variable Measurement
	C. Empirical Analysis and Results

