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Abstract 

 
Since the notion of software aging was introduced thirteen 
years ago, the interest in this phenomenon has been in-
creasing from both academia and industry. The majority 
of the research efforts in studying software aging have 
focused on understanding its effects theoretically and em-
pirically. However, conceptual aspects related to the 
foundation of this phenomenon have not been covered in 
the literature. This paper discusses foundational aspects of 
the software aging phenomenon, introducing new concepts 
and interconnecting them with the current body of knowl-
edge, in order to compose a base taxonomy for the 
software aging research. Three real case studies are pre-
sented with the purpose of exemplifying many of the 
concepts discussed. 

 
 

1. Introduction 
 
Since the notion of software aging was introduced thir-

teen years ago [7], the interest in this phenomenon has 
been increasing from both academia and industry. The 
occurrence of software aging in real systems has been 
documented in the literature [3], [5], [8]. Many approaches 
have been used to study this phenomenon. The majority of 
these research efforts have concentrated on understanding 
its effects theoretically [2], [10] and empirically [5], [8], 
[11]. Moreover, the search for mitigation resulted in the 
so-called software rejuvenation techniques. Because the 
main research efforts have concentrated on the aging ef-
fects and their mitigation, conceptual aspects related to the 
foundation of this phenomenon have not been covered in 
the literature so far.  

This paper discusses the foundations of the software ag-
ing phenomenon. We focus on conceptual and practical 
aspects involved and formulate a set of definitions that we 
consider essential for composing a taxonomy for the soft-
ware aging and rejuvenation (SAR) research. 
 
 
 

2. Physics of software failures  
 
Software aging is usually a consequence of software 

faults. This section therefore revisits the body of knowl-
edge related to the taxonomy of faults and other depend-
ability concepts. In Section 3, we will discuss the specific 
nature of these concepts in the context of software aging.  

According to system theory, a system is a collection of 
inter-operating elements (or components); the system 
boundary separates the system from its environment. For 
example, a single software system includes the hardware, 
the operating system (OS) and the applications as its ele-
ments; however, the users and other software systems are 
part of its environment. Each system can itself be an ele-
ment of another (higher-level) system.  

A service failure (or simply failure) of a system is a 
deviation of the service delivered by this system from its 
specification. Such a deviation can be in the form of incor-
rect service, or no service at all. Moreover, the system can 
be in a degraded mode in which service is slow or limited; 
this case is referred to as a partial failure. In [1], the pa-
thology of a failure is discussed in terms of the “chain of 
threats”, showing the causal relationships between fault, 
error, and failure; this chain is illustrated in Figure 1.  

 
fault error failure

propagationactivation causation
fault… …

 

Figure 1. General “chain of threats” [1] 
 
An error is that part of the internal system state which 

may lead to a failure occurrence. Errors can be trans-
formed into other errors. For example, an error in 
component 1 can reach the service interface of this com-
ponent, used by component 2, thus causing an error in this 
second component. This transformation of errors is re-
ferred to as error propagation. The error propagation 
leads to a system failure if the error is propagated to the 
service interface of the system, causing the service pro-
vided to deviate from its specification. Note that the term 
error propagation is used for the transformation of an error 
into another error both with and without the causation of a 
failure occurrence. The “chain of threats” in Figure 1 ex-
plicitly only shows the latter kind of error propagation. 
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Each error, in turn, is caused by the activation of a 
fault. A fault that (currently) does not produce an error is 
said to be dormant. Applying inputs containing an activa-
tion pattern to a dormant fault can make this fault cause 
an error; this is referred to as fault activation. The rate 
with which a dormant fault will become active therefore 
depends heavily on the intensity and the way in which a 
system is used; a quantitative characterization of the latter 
aspect is the operational profile [9]. 

The failure of a system causes a fault in those systems 
receiving service from it, as well as in those higher-level 
systems in which it is contained.  

Avižienis et al. [1] present a scheme for classifying 
faults according to eight criteria, e.g., the system bounda-
ries (internal or external), the phenomenological cause 
(natural or human-made), the objective (malicious or non-
malicious), the persistence (permanent or transient), the 
dimension (hardware or software), and the phase of crea-
tion or occurrence (development or operation). Based on 
this classification scheme, faults in the software code, re-
ferred to as software flaws by Avižienis et al. and often 
simply called software faults or (software) bugs, can be 
described as internal human-made non-malicious perma-
nent software development faults.  

Furthermore, Avižienis et al. mention a classification of 
faults according to their activation/propagation reproduci-
bility: Faults whose activation and error propagation is 
reproducible are called solid, or hard, faults, whereas 
faults whose activation/propagation is not systematically 
reproducible are called elusive, or soft, faults. Especially 
for software bugs that permanently reside in the code (until 
they are detected and removed) it seems counterintuitive 
that repeating the actions (like user inputs) that previously 
caused a failure will not lead to another failure when re-
peated. It is therefore of interest to study the properties that 
a software fault needs to feature in order to have the poten-
tial to be non-reproducible. However, the classification 
into solid and elusive faults is subjective, because it also 
depends on the knowledge of the respective user about the 
fault activation and error propagation mechanism of the 
fault in question, as well as on the operational behavior of 
the user. A specific fault could be considered “solid” by 
one user, but “elusive” by another one. 

The definitions of Mandelbug and Bohrbug [4], [6] 
classify the fault types using more objective criteria related 
to properties of the fault itself. A Mandelbug has the po-
tential to be difficult to isolate and to cause failures that 
are not systematically reproducible. As an example, con-
sider the code of an application in which the initialization 
of a variable is missing. If a debugger initializing all vari-
ables by default can prevent the fault from causing a 
failure, then this fault is Mandelbug, because the debugger, 
a part of the system-internal environment of the applica-

tion, can affect fault activation. A Bohrbug, on the other 
hand, is an easily isolated fault that always manifests con-
sistently under a well-defined set of conditions, because its 
activation and error propagation lack “complexity” as de-
fined in [4], [6]. Bohrbug is the complementary antonym 
of Mandelbug. The Mandelbug definition [4], [6] uses the 
concept of the (software-)system-internal environment 
of an application. While the environment of an application 
consists of all the entities outside the system boundaries of 
the application (e.g., operating system, hardware, users, 
power supply network, office building), its system-internal 
environment only includes those entities outside the appli-
cation that are located within the boundaries of the 
computer system. In particular, users and office infrastruc-
ture are excluded. The system-internal environment of an 
application thus contains the hardware, the OS, the other 
applications, etc. 

 

3. Fundamental concepts of software aging 
 
Software aging is the name given to a phenomenon 

empirically observed in many software systems: A general 
characteristic of this phenomenon is the fact that, as the 
runtime period of the system or process increases, its fail-
ure rate also increases. Again, a failure can take the form 
of incorrect service (e.g., erroneous outcomes), no service 
(e.g., halt and/or crash of the system), or partial failure 
(e.g., gradual increase in response time). For physical sys-
tems, aging is well-known to occur in the wear-out phase. 
In the bathtub curve [12] this behavior is illustrated by an 
increasing failure rate after a certain stable period of life. 
However, while hardware faults can come into existence 
due to wear and tear, it seems impossible, at first sight, that 
software bugs, which are permanent development faults, 
can be responsible for software aging. Nevertheless, many 
aging-related failures of software systems are indeed the 
consequence of software faults. To explain their pathology, 
Figure 2 shows a modified version of the general “chain of 
threats” specific to these aging-related (AR) failures. 

 

AR fault/bug AR error AR failure
propagationactivation

aging factors
system-internal 

environment

error accumulation

 

Figure 2. “Chain of threats” for an aging-related failure 
 
The propagation of aging-related errors (i.e., errors 

that can cause AR failures) requires the state of the system-
internal environment to meet certain criteria. Most AR 
errors that do not (yet) cause a failure are kept in the inter-
nal system state, where such errors accumulate if there 
are successive activations of the aging-related fault. It is 
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usually exactly this accumulation of AR errors that leads 
the system-internal environment to a state in which AR 
errors are propagated causing AR failures.  

Using the classification scheme due to Avižienis et al. 
[1], AR faults can be further classified: Internal AR faults 
are usually human-made non-malicious permanent soft-
ware development faults, i.e., bugs in the program code; 
these are referred to as AR (software) bugs. An example of 
such an AR bug is the omission of commands that release 
memory that was dynamically allocated earlier. On the 
other hand, external AR faults are not static faults in the 
code of the system under study, but they are caused by 
external events. However, such events could in turn be 
caused by AR bugs in other systems.  

For two reasons, all AR bugs are Mandelbugs: First, 
there can be a long time delay between fault activation and 
the final failure occurrence; it is exactly such a delay that 
allows the accumulation of errors. Second, the failure oc-
currence caused by error accumulation and/or error pro-
pagation can depend on the system-internal environment. 

We refer to the activation patterns of an AR fault (i.e., 
the factors or the combinations of factors that activate this 
fault) as its aging factors. While internal aging factors 
are internal events (e.g., function calls triggering the exe-
cution of those parts of the code where the AR bug is 
located), external aging factors are triggers directly re-
leased by elements in the environment of the system, like 
its users. 

The time to aging-related failure is the random time 
period from the moment of the system startup or process 
creation until a failure occurrence due to AR faults. The 
probability distribution of this random time (as well as its 
expected value, the mean time to aging-related failure) is 
mainly influenced by the intensity with which the system 
gets exposed to aging factors; it is therefore influenced by 
the quantity and type of work performed by the process, 
which we refer to as the work journey of the process, and 
thus by the operational profile and the usage intensity of 
the system. 

In those cases in which the successive activation of AR 
faults causes the accumulation of AR errors, the software 
aging effect consists in the gradual shifting from a correct 
internal state to an erroneous and failure probable one. The 
extent with which each element in the cause-and-effect-
chain (external aging factor/internal aging factor/fault acti-
vation/error occurrence) contributes to this effect can be 
measured in terms of the error accumulation scale, speci-
fying the magnitude of the effect that each element in the 
chain has on the subsequent element.  

Different types of aging effects have been observed; 
based on their common characteristics we have created an 
initial set of aging effect classes, which are shown in 
Table 1. 

Table 1. Classes of aging effects 
Basic class Extension Examples 

Resource leakage  (1) OS-specific 
 (2) App-specific 

- Unreleased  
   • Memory (1, 2) 
   • File handlers (1) 
   • Sockets (1) 
- Unterminated 
   • Processes (1) 
   • Threads (1, 2)  

Fragmentation  (1) OS-specific 
 (2) App-specific 

- Phys. memory (1) 
- File system (1) 
- Database files (2) 

Numerical error 
accrual 

 (1) OS-specific 
 (2) App-specific 

- Round-off  (1, 2) 
 

Data corruption 
accrual 

 (1) OS-specific 
 (2) App-specific 

- File system (1) 
- Database files (2) 

 
Aging effects can also be classified into volatile and 

non-volatile effects. They are considered volatile if they 
are removed by re-initialization of the system or process 
affected, for example via a system reboot. In contrast, non-
volatile aging effects still exist after reinitializing of the 
system/process. Physical memory fragmentation and OS 
resource leakage are examples for volatile aging effects. 
File system and database metadata fragmentation are ex-
amples for non-volatile aging effects. Another example of 
a non-volatile aging effect is numerical error accrual pre-
served between system reboots via checkpoint mechanism. 
Note that hibernation and similar mechanisms (e.g., 
standby), which preserve the system memory (and thus the 
aging effects present in it) between system reinitialization, 
allow the majority of intrinsically volatile aging effects to 
persist even after system/process reinitialization.  

Aging effects in a system can only be detected while the 
system is running, by monitoring aging indicators. Aging 
indicators are markers for aging detection, like antigens 
are markers to detect cancer disease. In the simplest ap-
proach, system health is considered a latent binary variable 
distinguishing between a stable internal state on the one 
hand and a failure probable state on the other [7]. Aging 
indicators are then explanatory variables that individually 
or in combination can suggest whether or not the system is 
healthy. They can be considered at several levels, such as 
OS, application process, application component, middle-
ware, virtual machine (VM), and VM monitor (VMM). 
We can classify aging indicators in two general classes 
according to their granularity: 

1. System-wide indicators provide information re-
lated to subsystems shared by several running 
applications. Examples of shared subsystems are 
OS, middleware, VM and VMM, among others. 
Indicators in this category are often used to evalu-
ate the aging effects on the system as a whole and 
not for a specific application, since the shared na-
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ture of their environment may cause noise in the 
captured data. Examples of aging indicators in this 
category are free physical memory, used swap 
space, file table size, and system load. 

2. Application-specific indicators provide specific 
information about an individual application proc-
ess, thus giving more accurate information about it 
than system-wide indicators. When the application 
process is running under a VM (e.g., Java pro-
grams), then aging indicators applied to the VM 
can also be used as a reference for the application 
being executed under the VM. Examples of aging 
indicators in this category are resident set size of 
the process, Java VM heap size, and response time. 

An example for how an aging-related failure can be 
analyzed based on the concepts discussed above is shown 
in Table 2.   

While in many cases software aging is due to AR bugs, 
even in the absence of such faults in the code aging effects 
can occur as a consequence of the natural dynamics of a 
system’s behavior. This kind of aging is thus referred to as 
natural aging. Among the examples for natural aging are 
the fragmentation problems experienced by file systems, 
database index files, and main physical memory. Such ag-
ing effects are not related to a faulty code or design, but 
they are a consequence of the system/application usage 
over its lifetime. For example, in database servers the frag-
mentation class of aging effects can be captured via aging 
indicators such as the degree of index-related metadata 
fragmentation (e.g., Tablespace fragmentation value in the 
Oracle DBMS). 

Considering not only the software system itself, but the 
higher-level system including its users, one could argue

that natural aging is due to faults, namely to mistakes on 
the part of the operators; e.g., in the case of fragmentation 
problems the operator has made the mistake of not execut-
ing defragmentation routines. However, as such measures 
only mitigate the effects of natural aging, even “correct” 
behavior of the operators would not have solved the under-
lying problem. This is in contrast with software aging 
caused by AR bugs, discussed above, where fixing the 
software fault permanently removes the aging effect. 

The notion of natural aging without existence of a fault 
should not give the impression that any service degrada-
tion or any increase in the failure rate of a software system 
is considered software aging. Otherwise, this concept 
would also include increases in the failure rate that are 
merely due to changes in the operational profile or due to 
an increase in the intensity with which the system is being 
used. We therefore propose the following characteristics of 
the software aging phenomenon: 

1. The aging effect is not reversible without external 
intervention. For example, the accumulated internal 
error states caused by successive activations of ag-
ing-related faults do not disappear without external 
intervention; at the very best, no further errors may 
accumulate in the future, during periods in which the 
system is not exposed to any aging factors. Based on 
this characterization, an increasing failure rate due 
to the queuing of jobs in an overloaded system is not 
considered software aging, since the accumulated set 
of jobs not yet served will be reduced (and will fi-
nally disappear) once the workload falls below a 
certain threshold; see the Apache Web server exam-
ple (Section 4.2). 

 

Table 2. Example for analyzing the pathology of an AR failure 

 

Failure as perceived by the user: File server does not respond. 

Failure as perceived by the troubleshooter: Operating system halted. 

State of system-internal environment required for error propagation: Insufficiency of main physical memory (availability of < 350 kB) 

Error that leads to the failure: A memory leak inside the file server process. 

Aging effect: Loss (leakage) of 100 kB per activation of the AR fault. 

AR fault that causes the error: A wrong value of the parameter used in the free() function in the 
comm.c program file. 

Location of the AR fault: ( x ) Internal / (  ) External 

Internal aging factor(s): A call of the write_record() function. 

External aging factor(s): The arrival of a packet carrying out the command SAVE_FILE. 

Failure mechanics: 

External aging factor => Internal aging factor => Fault activation => 
 Error accumulation + Required state of system-internal environment 

=> Failure 

 

[Packet Save File] => write_record() => {free(), Line_200} =>          
Leakage of 100 kB + Availability of < 350 kB of main physical memory 
=> System crash 

Error accumulation scale: 1 : 1 : 1 : 100 kB 
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2. The aging effect depends on the clock time (the time 
since system startup or process creation) only if this 
clock time constitutes a part of the system-internal 
environment influencing error accumulation and/or 
propagation; see the Patriot example (Section 4.3). 

3. The CPU time influences the aging effect only if the 
process’s work journey, during its runtime, triggers 
aging-related faults or causes natural aging effects, 
or if the CPU time constitutes a part of the system-
internal environment influencing error accumulation 
and/or propagation. 

According to the first characteristic, software aging can 
be dealt with by external intervention. The fault tolerance 
technique using environmental diversity to mitigate the 
aging effects of a system is known as software rejuvena-
tion. It involves occasional resets of the internal system 
state, thus cleaning accumulated error conditions and con-
straining the possible domain of the system-internal 
environment. Software rejuvenation can be implemented at 
several granularity levels and applied to many types of 
elements in a system, such as the operating system, indi-
vidual software processes, or persistent data objects (like 
file system metadata and database index files).  

Software rejuvenation can be triggered at intervals de-
rived from analytical system models, or based on aging 
indicators monitored. Discovering an efficient and effec-
tive set of system variables that are the best aging 
indicators is a variable selection problem. The quality of 
the aging indicators directly influences the accuracy of the 
timing with which rejuvenation is triggered. It thus deter-
mines the costs (e.g., downtime during rejuvenation) and 
benefits (e.g., avoided downtime by unexpected failures) 
of the rejuvenation mechanism. 

It has been argued that software rejuvenation is not an 
engineering solution. Rather than dealing with the symp-
toms of aging, one should locate and fix the underlying 
aging-related fault, which solves the problem for good. 
However, this attitude neglects important advantages of the 
software rejuvenation technique: It can be employed to 
remove aging effects and avoid failure occurrences if the 
location of the AR fault, or even the very fact of its exis-
tence, is unknown. Moreover, software rejuvenation can be 
preferable due to technical, economical or time limitations. 
Finally, in the case of natural aging, where the aging ef-
fects are the consequence of normal system behavior, 
rejuvenation is indeed the only solution.  

 

4. Real case analysis 
 

4.1. Cisco Catalyst switch 
 
Cisco Systems, Inc. [3] reported a software fault affect-

ing several network switch products, including Catalyst 

2900, 4000, 5000, and 6000. The fault was related to the 
telnet service provided by these products as well as to their 
web management interface enabling the network manager 
to access the switches through a remote virtual console. 
Based on the problem report analysis, this fault can clearly 
be categorized as an aging-related fault. 

The effect of activating the fault was a memory leak in 
the telnetd processes that implemented these services. The 
accumulation of such errors gradually degraded the whole 
system state in terms of physical memory availability. If 
the period of uninterrupted execution was long enough to 
exhaust the physical memory, then the error propagation 
caused the failure of the switch not to execute any other 
processes, such as forwarding traffic or management. The 
aging-related fault was activated under the following two 
circumstances:  

1. A telnet connection was closed due to failed authen-
tication; or 

2. A successful login had an extremely short duration. 

These circumstances, directly related to the system us-
age, represent two confirmed external aging factors 
forming activation patterns. If two identical products were 
deployed in the same environment but only one of them 
was exposed to those activation patterns, then just that one 
suffered from the abovementioned aging effect.  

The occurrence of a switch failure depended on the 
state of the system-internal environment, which in turn was 
influenced by the extent of previous error accumulation. In 
this example, the relevant part of the system-internal envi-
ronment was the physical memory. Deployed con-
figurations of the same switch model could have different 
RAM capacities; naturally, for systems with a larger 
amount of RAM the mean time to aging-related failure was 
longer than for system with less RAM. 

 
4.2. Apache Web server 

 
A Web server running Apache version 1.3.14 on a 

Linux platform was put in an overload condition by syn-
thetic requests. Used swap space showed both a 
statistically significant increasing trend as well as a “sea-
sonal” pattern repeating every seven days. The seasonal 
behavior was caused by the weekly log-rotation triggering 
Apache to kill all of its child processes. As a consequence 
of this triggering event, swap space was released for two 
reasons: 

1. Swap space occupied by the Apache child proc-
esses, including unused memory not released earlier 
due to memory leaks, was released because these 
processes were killed. 

2. Swap space occupied by low-priority processes not 
executed but directed to the swap space due to the 
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overload condition was released because these proc-
esses were able to execute and terminate as soon as 
resources were freed by killing the Apache child 
processes.  

Although not planned as a software rejuvenation tech-
nique, the “external” intervention of the weekly log-
rotation rejuvenated parts of the system. However, most or 
all of the used swap space mentioned under (2) and maybe 
some of the swap space mentioned under (1) could proba-
bly have been released even without this incidental 
rejuvenation, by simply decreasing the intensity with 
which the system was used; to this extent the decrease in 
available swap space experienced was not an aging effect. 
Nevertheless, that part of the increase in swap space usage 
that could only be counteracted with the partial rejuvena-
tion, as well as the increase in swap space usage not 
affected by it (embodied in the statistically significant time 
trend) can be considered aging effects [5]. 

 
4.3. Patriot missile defense system 

 
To project a target’s trajectory, the weapons-control 

computer of the Patriot Missile System required its veloc-
ity and the time as real values. The system kept time 
internally as an integer, counting tenths of seconds and 
stored in a 24-bit register. This register could have been 
used for counting 16777217 tenths of seconds, or roughly 
19.4 days, without causing an overflow. However, when-
ever a target was spotted, the weapons-control computer 
needed to convert the integer value into a real value. This 
conversion caused an inaccuracy (error) whose magnitude 
was proportional to the length of time that the system had 
been continuously running. This inaccuracy immediately 
led to an imprecision in the calculated range where the 
detected target was expected next (i.e., the error was trans-
formed into another error). If this imprecision was small 
enough, then the target was tracked, classified and – if 
necessary – intercepted; i.e., the error propagation did not 
lead to a failure occurrence, and the errors related to the 
respective target became irrelevant after the fact (they did 
not accumulate, and they did not propagate any further). 
The aspect of the system-internal environment determining 
whether or not the error resulted in a failure was the sys-
tem runtime: After a system runtime of about eight hours, 
the imprecision in converting the integer value became so 
large that the target range calculated for a detected Scud 
missile was too far off the real location for tracking and 
intercepting the missile. On 25 February 1991, the Patriot 
system located at Dhahran, Saudi Arabia, failed to inter-
cept an arriving Scud missile after a runtime of more than 
20 hours since last reboot. [6] 

Even after a runtime of more than eight hours, changes 
in the future work journey could have reduced the failure 

rate due to the aging-related fault. For example, if no fur-
ther target (Scud missile, etc.) had ever arrived, then no 
further target range calculation would have been necessary, 
and the rate of missing any target would have been zero. 
However, this change in the future work journey would not 
have affected the factor in the system-internal environment 
influencing error propagation, i.e., the system time kept in 
the 24-bit register. Only external intervention (system re-
boot) was able to influence this factor. 
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