
In Proc. 1st International Workshop on Software Aging and Rejuvenation/ © IEEE
19th International Symposium on Software Reliability Engineering, 2008. 1

The Fundamentals of Software Aging

Michael Grottke*, Rivalino Matias Jr.‡, and Kishor S. Trivedi‡
*University of Erlangen-Nuremberg, Germany; Michael.Grottke@wiso.uni-erlangen.de

‡Duke University, USA; {rivalino, kst}@ee.duke.edu

Abstract

Since the notion of software aging was introduced thirteen
years ago, the interest in this phenomenon has been in-
creasing from both academia and industry. The majority
of the research efforts in studying software aging have
focused on understanding its effects theoretically and em-
pirically. However, conceptual aspects related to the
foundation of this phenomenon have not been covered in
the literature. This paper discusses foundational aspects of
the software aging phenomenon, introducing new concepts
and interconnecting them with the current body of knowl-
edge, in order to compose a base taxonomy for the
software aging research. Three real case studies are pre-
sented with the purpose of exemplifying many of the
concepts discussed.

1. Introduction

Since the notion of software aging was introduced thir-

teen years ago [7], the interest in this phenomenon has
been increasing from both academia and industry. The
occurrence of software aging in real systems has been
documented in the literature [3], [5], [8]. Many approaches
have been used to study this phenomenon. The majority of
these research efforts have concentrated on understanding
its effects theoretically [2], [10] and empirically [5], [8],
[11]. Moreover, the search for mitigation resulted in the
so-called software rejuvenation techniques. Because the
main research efforts have concentrated on the aging ef-
fects and their mitigation, conceptual aspects related to the
foundation of this phenomenon have not been covered in
the literature so far.

This paper discusses the foundations of the software ag-
ing phenomenon. We focus on conceptual and practical
aspects involved and formulate a set of definitions that we
consider essential for composing a taxonomy for the soft-
ware aging and rejuvenation (SAR) research.

2. Physics of software failures

Software aging is usually a consequence of software

faults. This section therefore revisits the body of knowl-
edge related to the taxonomy of faults and other depend-
ability concepts. In Section 3, we will discuss the specific
nature of these concepts in the context of software aging.

According to system theory, a system is a collection of
inter-operating elements (or components); the system
boundary separates the system from its environment. For
example, a single software system includes the hardware,
the operating system (OS) and the applications as its ele-
ments; however, the users and other software systems are
part of its environment. Each system can itself be an ele-
ment of another (higher-level) system.

A service failure (or simply failure) of a system is a
deviation of the service delivered by this system from its
specification. Such a deviation can be in the form of incor-
rect service, or no service at all. Moreover, the system can
be in a degraded mode in which service is slow or limited;
this case is referred to as a partial failure. In [1], the pa-
thology of a failure is discussed in terms of the “chain of
threats”, showing the causal relationships between fault,
error, and failure; this chain is illustrated in Figure 1.

fault error failure

propagationactivation causation
fault… …

Figure 1. General “chain of threats” [1]

An error is that part of the internal system state which

may lead to a failure occurrence. Errors can be trans-
formed into other errors. For example, an error in
component 1 can reach the service interface of this com-
ponent, used by component 2, thus causing an error in this
second component. This transformation of errors is re-
ferred to as error propagation. The error propagation
leads to a system failure if the error is propagated to the
service interface of the system, causing the service pro-
vided to deviate from its specification. Note that the term
error propagation is used for the transformation of an error
into another error both with and without the causation of a
failure occurrence. The “chain of threats” in Figure 1 ex-
plicitly only shows the latter kind of error propagation.

In Proc. 1st International Workshop on Software Aging and Rejuvenation/ © IEEE
19th International Symposium on Software Reliability Engineering, 2008. 2

Each error, in turn, is caused by the activation of a
fault. A fault that (currently) does not produce an error is
said to be dormant. Applying inputs containing an activa-
tion pattern to a dormant fault can make this fault cause
an error; this is referred to as fault activation. The rate
with which a dormant fault will become active therefore
depends heavily on the intensity and the way in which a
system is used; a quantitative characterization of the latter
aspect is the operational profile [9].

The failure of a system causes a fault in those systems
receiving service from it, as well as in those higher-level
systems in which it is contained.

Avižienis et al. [1] present a scheme for classifying
faults according to eight criteria, e.g., the system bounda-
ries (internal or external), the phenomenological cause
(natural or human-made), the objective (malicious or non-
malicious), the persistence (permanent or transient), the
dimension (hardware or software), and the phase of crea-
tion or occurrence (development or operation). Based on
this classification scheme, faults in the software code, re-
ferred to as software flaws by Avižienis et al. and often
simply called software faults or (software) bugs, can be
described as internal human-made non-malicious perma-
nent software development faults.

Furthermore, Avižienis et al. mention a classification of
faults according to their activation/propagation reproduci-
bility: Faults whose activation and error propagation is
reproducible are called solid, or hard, faults, whereas
faults whose activation/propagation is not systematically
reproducible are called elusive, or soft, faults. Especially
for software bugs that permanently reside in the code (until
they are detected and removed) it seems counterintuitive
that repeating the actions (like user inputs) that previously
caused a failure will not lead to another failure when re-
peated. It is therefore of interest to study the properties that
a software fault needs to feature in order to have the poten-
tial to be non-reproducible. However, the classification
into solid and elusive faults is subjective, because it also
depends on the knowledge of the respective user about the
fault activation and error propagation mechanism of the
fault in question, as well as on the operational behavior of
the user. A specific fault could be considered “solid” by
one user, but “elusive” by another one.

The definitions of Mandelbug and Bohrbug [4], [6]
classify the fault types using more objective criteria related
to properties of the fault itself. A Mandelbug has the po-
tential to be difficult to isolate and to cause failures that
are not systematically reproducible. As an example, con-
sider the code of an application in which the initialization
of a variable is missing. If a debugger initializing all vari-
ables by default can prevent the fault from causing a
failure, then this fault is Mandelbug, because the debugger,
a part of the system-internal environment of the applica-

tion, can affect fault activation. A Bohrbug, on the other
hand, is an easily isolated fault that always manifests con-
sistently under a well-defined set of conditions, because its
activation and error propagation lack “complexity” as de-
fined in [4], [6]. Bohrbug is the complementary antonym
of Mandelbug. The Mandelbug definition [4], [6] uses the
concept of the (software-)system-internal environment
of an application. While the environment of an application
consists of all the entities outside the system boundaries of
the application (e.g., operating system, hardware, users,
power supply network, office building), its system-internal
environment only includes those entities outside the appli-
cation that are located within the boundaries of the
computer system. In particular, users and office infrastruc-
ture are excluded. The system-internal environment of an
application thus contains the hardware, the OS, the other
applications, etc.

3. Fundamental concepts of software aging

Software aging is the name given to a phenomenon

empirically observed in many software systems: A general
characteristic of this phenomenon is the fact that, as the
runtime period of the system or process increases, its fail-
ure rate also increases. Again, a failure can take the form
of incorrect service (e.g., erroneous outcomes), no service
(e.g., halt and/or crash of the system), or partial failure
(e.g., gradual increase in response time). For physical sys-
tems, aging is well-known to occur in the wear-out phase.
In the bathtub curve [12] this behavior is illustrated by an
increasing failure rate after a certain stable period of life.
However, while hardware faults can come into existence
due to wear and tear, it seems impossible, at first sight, that
software bugs, which are permanent development faults,
can be responsible for software aging. Nevertheless, many
aging-related failures of software systems are indeed the
consequence of software faults. To explain their pathology,
Figure 2 shows a modified version of the general “chain of
threats” specific to these aging-related (AR) failures.

AR fault/bug AR error AR failure
propagationactivation

aging factors
system-internal

environment

error accumulation

Figure 2. “Chain of threats” for an aging-related failure

The propagation of aging-related errors (i.e., errors

that can cause AR failures) requires the state of the system-
internal environment to meet certain criteria. Most AR
errors that do not (yet) cause a failure are kept in the inter-
nal system state, where such errors accumulate if there
are successive activations of the aging-related fault. It is

In Proc. 1st International Workshop on Software Aging and Rejuvenation/ © IEEE
19th International Symposium on Software Reliability Engineering, 2008. 3

usually exactly this accumulation of AR errors that leads
the system-internal environment to a state in which AR
errors are propagated causing AR failures.

Using the classification scheme due to Avižienis et al.
[1], AR faults can be further classified: Internal AR faults
are usually human-made non-malicious permanent soft-
ware development faults, i.e., bugs in the program code;
these are referred to as AR (software) bugs. An example of
such an AR bug is the omission of commands that release
memory that was dynamically allocated earlier. On the
other hand, external AR faults are not static faults in the
code of the system under study, but they are caused by
external events. However, such events could in turn be
caused by AR bugs in other systems.

For two reasons, all AR bugs are Mandelbugs: First,
there can be a long time delay between fault activation and
the final failure occurrence; it is exactly such a delay that
allows the accumulation of errors. Second, the failure oc-
currence caused by error accumulation and/or error pro-
pagation can depend on the system-internal environment.

We refer to the activation patterns of an AR fault (i.e.,
the factors or the combinations of factors that activate this
fault) as its aging factors. While internal aging factors
are internal events (e.g., function calls triggering the exe-
cution of those parts of the code where the AR bug is
located), external aging factors are triggers directly re-
leased by elements in the environment of the system, like
its users.

The time to aging-related failure is the random time
period from the moment of the system startup or process
creation until a failure occurrence due to AR faults. The
probability distribution of this random time (as well as its
expected value, the mean time to aging-related failure) is
mainly influenced by the intensity with which the system
gets exposed to aging factors; it is therefore influenced by
the quantity and type of work performed by the process,
which we refer to as the work journey of the process, and
thus by the operational profile and the usage intensity of
the system.

In those cases in which the successive activation of AR
faults causes the accumulation of AR errors, the software
aging effect consists in the gradual shifting from a correct
internal state to an erroneous and failure probable one. The
extent with which each element in the cause-and-effect-
chain (external aging factor/internal aging factor/fault acti-
vation/error occurrence) contributes to this effect can be
measured in terms of the error accumulation scale, speci-
fying the magnitude of the effect that each element in the
chain has on the subsequent element.

Different types of aging effects have been observed;
based on their common characteristics we have created an
initial set of aging effect classes, which are shown in
Table 1.

Table 1. Classes of aging effects
Basic class Extension Examples

Resource leakage (1) OS-specific
 (2) App-specific

- Unreleased
 • Memory (1, 2)
 • File handlers (1)
 • Sockets (1)
- Unterminated
 • Processes (1)
 • Threads (1, 2)

Fragmentation (1) OS-specific
 (2) App-specific

- Phys. memory (1)
- File system (1)
- Database files (2)

Numerical error
accrual

 (1) OS-specific
 (2) App-specific

- Round-off (1, 2)

Data corruption
accrual

 (1) OS-specific
 (2) App-specific

- File system (1)
- Database files (2)

Aging effects can also be classified into volatile and

non-volatile effects. They are considered volatile if they
are removed by re-initialization of the system or process
affected, for example via a system reboot. In contrast, non-
volatile aging effects still exist after reinitializing of the
system/process. Physical memory fragmentation and OS
resource leakage are examples for volatile aging effects.
File system and database metadata fragmentation are ex-
amples for non-volatile aging effects. Another example of
a non-volatile aging effect is numerical error accrual pre-
served between system reboots via checkpoint mechanism.
Note that hibernation and similar mechanisms (e.g.,
standby), which preserve the system memory (and thus the
aging effects present in it) between system reinitialization,
allow the majority of intrinsically volatile aging effects to
persist even after system/process reinitialization.

Aging effects in a system can only be detected while the
system is running, by monitoring aging indicators. Aging
indicators are markers for aging detection, like antigens
are markers to detect cancer disease. In the simplest ap-
proach, system health is considered a latent binary variable
distinguishing between a stable internal state on the one
hand and a failure probable state on the other [7]. Aging
indicators are then explanatory variables that individually
or in combination can suggest whether or not the system is
healthy. They can be considered at several levels, such as
OS, application process, application component, middle-
ware, virtual machine (VM), and VM monitor (VMM).
We can classify aging indicators in two general classes
according to their granularity:

1. System-wide indicators provide information re-
lated to subsystems shared by several running
applications. Examples of shared subsystems are
OS, middleware, VM and VMM, among others.
Indicators in this category are often used to evalu-
ate the aging effects on the system as a whole and
not for a specific application, since the shared na-

In Proc. 1st International Workshop on Software Aging and Rejuvenation/ © IEEE
19th International Symposium on Software Reliability Engineering, 2008. 4

ture of their environment may cause noise in the
captured data. Examples of aging indicators in this
category are free physical memory, used swap
space, file table size, and system load.

2. Application-specific indicators provide specific
information about an individual application proc-
ess, thus giving more accurate information about it
than system-wide indicators. When the application
process is running under a VM (e.g., Java pro-
grams), then aging indicators applied to the VM
can also be used as a reference for the application
being executed under the VM. Examples of aging
indicators in this category are resident set size of
the process, Java VM heap size, and response time.

An example for how an aging-related failure can be
analyzed based on the concepts discussed above is shown
in Table 2.

While in many cases software aging is due to AR bugs,
even in the absence of such faults in the code aging effects
can occur as a consequence of the natural dynamics of a
system’s behavior. This kind of aging is thus referred to as
natural aging. Among the examples for natural aging are
the fragmentation problems experienced by file systems,
database index files, and main physical memory. Such ag-
ing effects are not related to a faulty code or design, but
they are a consequence of the system/application usage
over its lifetime. For example, in database servers the frag-
mentation class of aging effects can be captured via aging
indicators such as the degree of index-related metadata
fragmentation (e.g., Tablespace fragmentation value in the
Oracle DBMS).

Considering not only the software system itself, but the
higher-level system including its users, one could argue

that natural aging is due to faults, namely to mistakes on
the part of the operators; e.g., in the case of fragmentation
problems the operator has made the mistake of not execut-
ing defragmentation routines. However, as such measures
only mitigate the effects of natural aging, even “correct”
behavior of the operators would not have solved the under-
lying problem. This is in contrast with software aging
caused by AR bugs, discussed above, where fixing the
software fault permanently removes the aging effect.

The notion of natural aging without existence of a fault
should not give the impression that any service degrada-
tion or any increase in the failure rate of a software system
is considered software aging. Otherwise, this concept
would also include increases in the failure rate that are
merely due to changes in the operational profile or due to
an increase in the intensity with which the system is being
used. We therefore propose the following characteristics of
the software aging phenomenon:

1. The aging effect is not reversible without external
intervention. For example, the accumulated internal
error states caused by successive activations of ag-
ing-related faults do not disappear without external
intervention; at the very best, no further errors may
accumulate in the future, during periods in which the
system is not exposed to any aging factors. Based on
this characterization, an increasing failure rate due
to the queuing of jobs in an overloaded system is not
considered software aging, since the accumulated set
of jobs not yet served will be reduced (and will fi-
nally disappear) once the workload falls below a
certain threshold; see the Apache Web server exam-
ple (Section 4.2).

Table 2. Example for analyzing the pathology of an AR failure

Failure as perceived by the user: File server does not respond.

Failure as perceived by the troubleshooter: Operating system halted.

State of system-internal environment required for error propagation: Insufficiency of main physical memory (availability of < 350 kB)

Error that leads to the failure: A memory leak inside the file server process.

Aging effect: Loss (leakage) of 100 kB per activation of the AR fault.

AR fault that causes the error: A wrong value of the parameter used in the free() function in the
comm.c program file.

Location of the AR fault: (x) Internal / () External

Internal aging factor(s): A call of the write_record() function.

External aging factor(s): The arrival of a packet carrying out the command SAVE_FILE.

Failure mechanics:

External aging factor => Internal aging factor => Fault activation =>
 Error accumulation + Required state of system-internal environment

=> Failure

[Packet Save File] => write_record() => {free(), Line_200} =>
Leakage of 100 kB + Availability of < 350 kB of main physical memory
=> System crash

Error accumulation scale: 1 : 1 : 1 : 100 kB

In Proc. 1st International Workshop on Software Aging and Rejuvenation/ © IEEE
19th International Symposium on Software Reliability Engineering, 2008. 5

2. The aging effect depends on the clock time (the time
since system startup or process creation) only if this
clock time constitutes a part of the system-internal
environment influencing error accumulation and/or
propagation; see the Patriot example (Section 4.3).

3. The CPU time influences the aging effect only if the
process’s work journey, during its runtime, triggers
aging-related faults or causes natural aging effects,
or if the CPU time constitutes a part of the system-
internal environment influencing error accumulation
and/or propagation.

According to the first characteristic, software aging can
be dealt with by external intervention. The fault tolerance
technique using environmental diversity to mitigate the
aging effects of a system is known as software rejuvena-
tion. It involves occasional resets of the internal system
state, thus cleaning accumulated error conditions and con-
straining the possible domain of the system-internal
environment. Software rejuvenation can be implemented at
several granularity levels and applied to many types of
elements in a system, such as the operating system, indi-
vidual software processes, or persistent data objects (like
file system metadata and database index files).

Software rejuvenation can be triggered at intervals de-
rived from analytical system models, or based on aging
indicators monitored. Discovering an efficient and effec-
tive set of system variables that are the best aging
indicators is a variable selection problem. The quality of
the aging indicators directly influences the accuracy of the
timing with which rejuvenation is triggered. It thus deter-
mines the costs (e.g., downtime during rejuvenation) and
benefits (e.g., avoided downtime by unexpected failures)
of the rejuvenation mechanism.

It has been argued that software rejuvenation is not an
engineering solution. Rather than dealing with the symp-
toms of aging, one should locate and fix the underlying
aging-related fault, which solves the problem for good.
However, this attitude neglects important advantages of the
software rejuvenation technique: It can be employed to
remove aging effects and avoid failure occurrences if the
location of the AR fault, or even the very fact of its exis-
tence, is unknown. Moreover, software rejuvenation can be
preferable due to technical, economical or time limitations.
Finally, in the case of natural aging, where the aging ef-
fects are the consequence of normal system behavior,
rejuvenation is indeed the only solution.

4. Real case analysis

4.1. Cisco Catalyst switch

Cisco Systems, Inc. [3] reported a software fault affect-

ing several network switch products, including Catalyst

2900, 4000, 5000, and 6000. The fault was related to the
telnet service provided by these products as well as to their
web management interface enabling the network manager
to access the switches through a remote virtual console.
Based on the problem report analysis, this fault can clearly
be categorized as an aging-related fault.

The effect of activating the fault was a memory leak in
the telnetd processes that implemented these services. The
accumulation of such errors gradually degraded the whole
system state in terms of physical memory availability. If
the period of uninterrupted execution was long enough to
exhaust the physical memory, then the error propagation
caused the failure of the switch not to execute any other
processes, such as forwarding traffic or management. The
aging-related fault was activated under the following two
circumstances:

1. A telnet connection was closed due to failed authen-
tication; or

2. A successful login had an extremely short duration.

These circumstances, directly related to the system us-
age, represent two confirmed external aging factors
forming activation patterns. If two identical products were
deployed in the same environment but only one of them
was exposed to those activation patterns, then just that one
suffered from the abovementioned aging effect.

The occurrence of a switch failure depended on the
state of the system-internal environment, which in turn was
influenced by the extent of previous error accumulation. In
this example, the relevant part of the system-internal envi-
ronment was the physical memory. Deployed con-
figurations of the same switch model could have different
RAM capacities; naturally, for systems with a larger
amount of RAM the mean time to aging-related failure was
longer than for system with less RAM.

4.2. Apache Web server

A Web server running Apache version 1.3.14 on a

Linux platform was put in an overload condition by syn-
thetic requests. Used swap space showed both a
statistically significant increasing trend as well as a “sea-
sonal” pattern repeating every seven days. The seasonal
behavior was caused by the weekly log-rotation triggering
Apache to kill all of its child processes. As a consequence
of this triggering event, swap space was released for two
reasons:

1. Swap space occupied by the Apache child proc-
esses, including unused memory not released earlier
due to memory leaks, was released because these
processes were killed.

2. Swap space occupied by low-priority processes not
executed but directed to the swap space due to the

In Proc. 1st International Workshop on Software Aging and Rejuvenation/ © IEEE
19th International Symposium on Software Reliability Engineering, 2008. 6

overload condition was released because these proc-
esses were able to execute and terminate as soon as
resources were freed by killing the Apache child
processes.

Although not planned as a software rejuvenation tech-
nique, the “external” intervention of the weekly log-
rotation rejuvenated parts of the system. However, most or
all of the used swap space mentioned under (2) and maybe
some of the swap space mentioned under (1) could proba-
bly have been released even without this incidental
rejuvenation, by simply decreasing the intensity with
which the system was used; to this extent the decrease in
available swap space experienced was not an aging effect.
Nevertheless, that part of the increase in swap space usage
that could only be counteracted with the partial rejuvena-
tion, as well as the increase in swap space usage not
affected by it (embodied in the statistically significant time
trend) can be considered aging effects [5].

4.3. Patriot missile defense system

To project a target’s trajectory, the weapons-control

computer of the Patriot Missile System required its veloc-
ity and the time as real values. The system kept time
internally as an integer, counting tenths of seconds and
stored in a 24-bit register. This register could have been
used for counting 16777217 tenths of seconds, or roughly
19.4 days, without causing an overflow. However, when-
ever a target was spotted, the weapons-control computer
needed to convert the integer value into a real value. This
conversion caused an inaccuracy (error) whose magnitude
was proportional to the length of time that the system had
been continuously running. This inaccuracy immediately
led to an imprecision in the calculated range where the
detected target was expected next (i.e., the error was trans-
formed into another error). If this imprecision was small
enough, then the target was tracked, classified and – if
necessary – intercepted; i.e., the error propagation did not
lead to a failure occurrence, and the errors related to the
respective target became irrelevant after the fact (they did
not accumulate, and they did not propagate any further).
The aspect of the system-internal environment determining
whether or not the error resulted in a failure was the sys-
tem runtime: After a system runtime of about eight hours,
the imprecision in converting the integer value became so
large that the target range calculated for a detected Scud
missile was too far off the real location for tracking and
intercepting the missile. On 25 February 1991, the Patriot
system located at Dhahran, Saudi Arabia, failed to inter-
cept an arriving Scud missile after a runtime of more than
20 hours since last reboot. [6]

Even after a runtime of more than eight hours, changes
in the future work journey could have reduced the failure

rate due to the aging-related fault. For example, if no fur-
ther target (Scud missile, etc.) had ever arrived, then no
further target range calculation would have been necessary,
and the rate of missing any target would have been zero.
However, this change in the future work journey would not
have affected the factor in the system-internal environment
influencing error propagation, i.e., the system time kept in
the 24-bit register. Only external intervention (system re-
boot) was able to influence this factor.

5. References

[1] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr.
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, 2004.

[2] Y. Bao, X. Sun, and K. S. Trivedi. “A workload-based
analysis of software aging and rejuvenation,” IEEE Trans-
actions on Reliability, vol. 55, no. 3, pp. 541–548, 2005.

[3] Cisco Systems, Inc. “Cisco security advisory: Cisco Cata-
lyst memory leak vulnerability,” Document ID: 13618,
2001. URL = http://www.cisco.com/warp/public/707/cisco-
sa-20001206-catalyst-memleak.shtml.

[4] M. Grottke and K. S. Trivedi. “Software faults, software
aging, and software rejuvenation,” Journal of the Reliabil-
ity Association of Japan, vol. 27, no. 7, pp. 425–438, 2005.

[5] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi.
“Analysis of software aging in a web server,” IEEE Trans-
actions on Reliability, vol. 55, no. 3, pp. 411–420, 2006.

[6] M. Grottke and K. S. Trivedi. “Fighting bugs: Remove,
retry, replicate and rejuvenate,” IEEE Computer, vol. 40,
no. 2, pp. 107–109, 2007.

[7] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. ”Software
rejuvenation: analysis, module and applications,” In Proc.
Twenty-Fifth International Symposium on Fault-Tolerant
Computing, pp. 381–390, 1995.

[8] R. Matias and P. J. Freitas. “An experimental study on
software aging and rejuvenation in web servers,” In Proc.
30th Annual International Computer Software and Appli-
cations Conference, vol. 1, pp. 189–196, 2006.

[9] J. D. Musa. “Operational profiles in software reliability en-
gineering,” IEEE Software, vol. 10, no. 2, pp. 14–32, 1993.

[10] M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota, and
Y. Liu. “Software aging and multifractality of memory re-
sources,” In Proc. IEEE International Conference on
Dependable Systems and Networks, pp. 721–730, 2003.

[11] L. Silva, H. Madeira, and J. G. Silva. “Software aging and
rejuvenation in a SOAP-based server,” In Proc. Fifth IEEE
International Symposium on Network Computing and Ap-
plications, pp. 56–65, 2006

[12] P. Tobias and D. Trindade. Applied Reliability, 2nd edition.
Kluwer Academic Publishers, Boston, 1995.

