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Abstract

Many software reliability growth models assume that the
time to next failure may be infinite; i.e., there is a chance
that no failure will occur at all. For most software prod-
ucts this is too good to be true even after the testing phase.
Moreover, if a non-zero probability is assigned to an infi-
nite time to failure, metrics like the mean time to failure
do not exist. In this paper, we try to answer several ques-
tions: Under what condition does a model permit an infinite
time to next failure? Why do all non-homogeneous Poisson
process (NHPP) models of the finite failures category share
this property? And is there any transformation mending the
time to failure distributions? Indeed, such a transformation
exists; it leads to a new family of NHPP models. We also
show how the distribution function of the time to first failure
can be used for unifying finite failures and infinite failures
NHPP models.

1. Introduction

Despite the advances made with respect to the develop-
ment of techniques and tools supporting the requirements
analysis, the design and the implementation of software, the
correctness of computer programs cannot be guaranteed. It
is always possible that a piece of software contains faults
(e.g., buggy lines of code) leading to deviations of the ac-
tual software behavior from its specification. Such observed
deviations are referred to as failures.

Since the number of software faults, their location in
the code and the sequence of user inputs are not pre-
determined, the times at which failures are experienced are
random. Let the continuous random variableXi represent
the time between the(i−1)st and theith failure occurrence,
also called theith time to failure (TTF). For a program that
has already been released, we hope that all realizations of
the TTFs are large values; i.e., the software should only fail

∗Corresponding author, on leave of absence from the Chair of Statis-
tics and Econometrics, University of Erlangen-Nuremberg, Germany. This
work was supported by a fellowship within the Postdoc Program of the
German Academic Exchange Service (DAAD).

rarely. This means that due to the characteristics of the soft-
ware and the execution profile, each random variableXi

should have a density function assigning a large fraction of
the probability mass to long inter-failure times. In an ideal
scenario, in which the software cannot fail again, the entire
probability mass of theith TTF Xi is assigned to infinity.
This may happen either if the software is fault-free after the
correction of the(i−1)st fault or if the remaining faults are
located in parts of the software that will never be executed.
If there is a chance that no fault is left in those regions of
the software (eventually) used according to the operational
profile, then a probability between zero and one is attached
to infinity. In this case, the distribution function ofXi does
not reach the value one asx approaches infinity:

lim
x→∞

FXi(x) < 1.

Distributions with this characteristic are called “improper”
[11] or “defective” [21, p. 146]. For such distributions, the
moments are infinite; therefore, important metrics like the
mean time to failureE(Xi) or the varianceV ar(Xi) are
not meaningful. Even an extremely small probability for
an infinite TTF drowns any useful information about the
distribution that these measures might convey.

Maybe this is the reason why practitioners and re-
searchers sometimes feel uncomfortable when dealing with
non-homogeneous Poisson process (NHPP) models of the
finite failures category: For these models,all TTF distribu-
tions are defective.

Moreover, a defective distribution of the first TTFX1

implies the possibility that no failure will occur at all. For
most software products this seems to be too good to be true
even after they have been thoroughly tested.

This paper investigates why certain SRGMs imply defec-
tive TTF distributions. Its main contribution is the deriva-
tion of a generic method for transforming NHPP models of
the finite failures category; in the resulting model class all
TTF distributions are proper. An additional result of our re-
search is a mean value function unifying all NHPP models.

The remaining parts are organized as follows: In Sec-
tion 2 we investigate the general class of continuous-time
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Markov chain SRGMs. NHPP models in particular are stud-
ied in Section 3. Based on the insight gained, we are able
to find an approach for transforming NHPP models of the
finite failures category such that all TTF distributions of
the resulting models are non-defective; this approach is ex-
plained in Section 4. For continuous-time Markov chain
models not belonging to the class of NHPP models Sec-
tion 5 identifies those sub-classes for which the TTF dis-
tributions may be defective. In Section 6 we apply our
generic transformation to the well-known Goel-Okumoto
model. This leads to a new SRGM, which we call “trun-
cated Goel-Okumoto model”, and we use this model for fit-
ting and predicting a real failure data set. Section 7 con-
cludes this paper.

2. Defective TTF distributions in SRGMs

For many SRGMs the stochastic process counting the
number of failure occurrences over time,{M(t), t ≥ 0},
is a continuous-time Markov chain (CTMC).1 Its structure
is shown in Figure 1.

Assuming that only one failure can occur at a time and
taking into account that a failure occurrence cannot be un-
done, from each statei−1 a transition is merely possible to
the next statei; the counting process is a pure birth process.
The dashed transition out of stateu0 indicates that some
models assume that the total number of failure occurrences
is bounded by a certain valueu0. For these models stateu0

is absorbing, and the CTMC terminates at that state.
According to the Markov property, the only part of the

history of the counting process that may affect its future is
the current state. In addition, the timet may have an influ-
ence. Since the transition rate between statei− 1 and state
i is in general both time-dependent and state-dependent, we
denote it byri−1(t). If all transition rates are not time-
dependent but only state-dependent, then the SRGM is a
homogeneous CTMC model such as the Jelinski-Moranda
model [10]; if they are all time-dependent but not state-
dependent, then the SRGM belongs to the class of NHPP
models.
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Figure 1. Failure counting process as a CTMC

1A more general model class containing additional SRGMs is the self-
exciting point process (SEPP). The following discussion of the relation-
ships between the transitions rates, the program hazard rate and the failure
intensity function is based on the software reliability literature dealing with
SEPPs, see [2, 4, 7, 13, 20].

As long as the current statem(t) of the counting pro-
cess is unknown, the program hazard rateZ, represent-
ing the instantaneous danger of a failure occurrence, is
a function of the random variableM(t) as well as time:
Z(t,M(t)) = rM(t)(t). Since its realizationz(t,m(t)) is
pieced together from the individual transition ratesr0(t),
r1(t), ..., the program hazard rate is also referred to as “con-
catenated hazard rate” (or “concatenated failure rate func-
tion” [2]). Its expected value with respect toM(t) is a func-
tion of time [13], the so-called failure intensity function,
λ(t) = E(Z(t,M(t))) =

∑∞
i=0 ri(t) · P (M(t) = i). Inte-

grating the failure intensity function from zero tot yields
the mean value functionµ(t), representing the expected
number of failure occurrences in the interval(0, t]:

µ(t) =
∫ t

0

λ(y) dy =
∞∑

i=0

i · P (M(t) = i) = E(M(t)).

Given thati − 1 failures have been experienced by timet,
the reliability in the interval(t, t+ x] is

R(x | t,M(t) = i− 1) = exp
(
−
∫ t+x

t

z(y, i− 1) dy
)

= exp
(
−
∫ t+x

t

ri−1(y) dy
)
. (1)

Let the random variablesT1, T2, ... denote the times of
the first, second, ... failure occurrence. We will useti
(i = 1, 2, ...) for referring to the realization of theith fail-
ure time;t0 ≡ 0 is not a failure time but the beginning of
testing. Giventi−1, the distribution function ofXi is

FXi(x) = 1−R(x | ti−1,M(ti−1) = i− 1)

= 1− exp
(
−
∫ ti−1+x

ti−1

ri−1(y) dy
)
.

This distribution ofXi is defective ifri−1(t) converges to
zero fast enough for

lim
x→∞

∫ ti−1+x

ti−1

ri−1(y) dy = c <∞, (2)

because in this caselimx→∞R(x | ti−1,M(ti−1) = i− 1)
= exp (−c) > 0 andlimx→∞ FXi(x) = 1−exp (−c) < 1.
A possible explanation as to whyri−1(t) may decrease at all
although no failure occurs (and hence no fault is corrected)
is a subjective one: The longer the software has been run-
ning without showing a failure, the higher is the confidence
that it will not fail in the future.

3. Defective TTF distributions in NHPP models

For non-homogeneous Poisson process (NHPP) models,
all transition ratesr0(t), r1(t), ... are functions of timet, but
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they are independent of the number of previous failure oc-
currencesM(t). Therefore, they are the same functionr(t).
As a consequence, the program hazard rateZ(t,M(t)) is
not a random variable, but a deterministic functionz(t) of
time, and it is identical to the functionr(t). Moreover, it is
identical to the failure intensityλ(t). Hence,

λ(t) = z(t) = r(t) = r0(t) = r1(t) = . . . . (3)

The model assumptions imply thatM(t) follows a Poisson
distribution with expectation given by the mean value func-
tion µ(t) connected to equation (3). Specifying either the
failure intensity function or the mean value function fully
determines the NHPP model.

Given the observed failure timeti−1, the reliability of
the software in the interval(ti−1, ti−1 + x] is

R(x | ti−1,M(ti−1) = i− 1) = exp
(
−
∫ ti−1+x

ti−1

λ(y) dy
)

= exp (−µ(ti−1 + x) + µ(ti−1)) , (4)

and the distribution function ofXi is

FXi(x) = 1− exp (−µ(ti−1 + x) + µ(ti−1)) . (5)

Whether the distribution of the time to theith failure is de-
fective or not depends on the behavior ofµ(ti−1 + x) asx
approaches infinity.

3.1. Finite failures category NHPP models

Musa et al. [17, pp. 250–251] refer to SRGMs for which
the expected number of failures experienced in infinite time
is finite as “finite failures category models”. We follow Kuo
and Yang [12] in calling the NHPP models of this category
“NHPP-I” models. These models can be derived by assum-
ing that the detection times of alln faults present in the soft-
ware at the beginning of testing are independently and iden-
tically distributed (iid) with distribution functionG(t). This
means that all faults are equally dangerous with respect to
their tendency of causing a failure, but they do not influence
each other. Provided that upon detection each fault is cor-
rected perfectly and without introducing any new fault into
the software, theme failure occurrence times observed dur-
ing testing are the firstme order statistics ofn iid random
variables with density functiong(t) = dG(t)/dt. From this
general order statistics model [12] we obtain the NHPP-I
model if the initial number of faults is not deterministic, but
a random variableN following a Poisson distribution with
expected valueν. The mean value function of the resulting
NHPP-I models has the general form [17, p. 269]

µ(t) = νG(t). (6)

Taking a different point of view, we may stress not the ten-
dency of faults to show themselves but the testers’ efforts

in finding them by executing as many different parts of the
software as possible. If the faults are uniformly distributed
over the program, thenG(t) can be interpreted as a cover-
age function [6, 19].

It should be pointed out that the derivation of NHPP-I
models via order statistics need not be based on iid fault
detection times. In the approach sketched above, the haz-
ard rates of all faults are possibly time-varying but identical
za(t) = g(t)/[1−G(t)]. In contrast to this, Miller [15] pro-
posed that the per-fault hazard rates are constant over time,
but they may be nonidentical; he showed that many NHPP
models and other SRGMs fit into this framework.

The distribution functionG(t) is usually assumed to be
non-defective, implying that each fault will eventually lead
to a failure. In the well-known Goel-Okumoto model [5],
for example,G(t) is the non-defective function

G(t) = 1− exp(−φt). (7)

However, the coverage function does not have to be proper.
In many SRGMs with a time-varying testing-effort, e.g. the
one with a Weibull testing-effort proposed by Yamada et al.
[22, 23] and the one with a logistic testing-effort by Huang
et al. [8, 9], the coverage functionG(t) is

G(t) = 1− exp(−φγW ∗(t)). (8)

In this equation,φ > 0 represents the fault detection rate
per fault and unit of testing-effort, whileγ > 0 stands
for the total amount of testing-effort required by software
testing. W ∗(t) is a (non-defective) distribution function
modeling the dispersion of testing-effort over time. Since
the total testing-effort is limited byγ, limt→∞G(t) =
1−exp(−φγ) < 1, which means that the coverage function
(8) is defective. In the following, we will assume thatG(t)
is anon-defectivedistribution function.

According to equations (3) and (6), for an NHPP-I model
all transition rates are identical to the failure intensity,

r0(t) = r1(t) = r2(t) = ... = λ(t) = νg(t), (9)

whereg(t) is the first derivative ofG(t) with respect tot.
Therefore, the structure of the counting process can be de-
picted as in Figure 2. Since the expected number of failures
experienced during an infinite amount of testing is equal to
the expected number of inherent faultsν, the limit of the
reliability in the interval(ti−1, ti−1 + x] for x approaching
infinity is

lim
x→∞

R(x | ti−1,M(ti−1) = i− 1) = exp (−ν + µ(ti−1))

= exp (−ν(1−G(ti−1))) > 0. (10)

Whatever the number of previous failuresi − 1 may be,
there is always a non-zero probability that the software will
not fail anith time. Therefore, all TTF distributionsFXi(x)
connected to NHPP-I models are defective.
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 Figure 2. The counting process connected to
an NHPP-I model

An intuitive proposition is that the event of no further failure
occurrence in the future is related to the event that no addi-
tional fault is left in the software. In fact, the conditional
probability mass function of the initial number of faultsN ,
given thati − 1 failures have been experienced by timet,
turns out to be

P (N = n |M(t) = i− 1)

=
P (M(t) = i− 1 | N = n) · P (N = n)∑∞

k=i−1 P (M(t) = i− 1 | N = k) · P (N = k)

=

(
n
i−1

)
G(t)i−1[1−G(t)]n−(i−1) · νnn! · exp(−ν)

∑∞
k=i−1

(
k
i−1

)
G(t)i−1[1−G(t)]k−(i−1) · νkk! · exp(−ν)

=
[ν(1−G(t))]n−(i−1)

(n− (i− 1))!
exp(−ν(1−G(t))) (11)

for n ≥ i − 1. Hence, the conditional distribution of the
number of faults remainingN −M(t), given thatM(t) =
i − 1, is Poisson with expected valueν(1 − G(t)). If the
(i− 1)st failure occurred at timeti−1, then the conditional
probability for the event that this failure was caused by the
last ofi−1 initial faults isexp(−ν(1−G(ti−1))), which is
indeed identical to the limiting reliability in equation (10).
This seems to corroborate our assumption that the defective-
ness of the TTF distributions in NHPP-I models is linked
to the possibility of no fault remaining in the software. In
Section 4 we will study how this insight can be used for
mending TTF distributions.

3.2. Infinite failures category NHPP models

Kuo and Yang [12] introduced the term “NHPP-II” for
infinite failures category [17, pp. 250–251] NHPP models.
These models share the property thatµ(t) approaches infin-
ity as t → ∞. Kuo and Yang showed that the mean value
function of NHPP-II models can be written as

µ(t) = − ln[1−H(t)], (12)

whereH(t) is a non-defective distribution function. The
failure times generated by such a model are the record val-
ues of independent outcomes with identical density function
h(t) = dH(t)/dt.

Since µ(t) approaches infinity ast → ∞, all TTF
distributions are non-defective:limx→∞ FXi(x) = 1 −
limx→∞ exp (−µ(ti−1 + x) + µ(ti−1)) = 1. However,
this does not necessarily mean that the expected values

E(Xi) are finite. A prominent example for this phe-
nomenon is the Musa-Okumoto model [18], whose mean
value function and failure intensity are given by

µ(t) =
1
θ

ln(λ0θt+ 1) and λ(t) =
λ0

λ0θt+ 1
, (13)

respectively. In this model, only for0 < θ < 1 the mean
time to theith failure is finite:2

E(Xi) =
∫ ∞

0

R(x | ti−1,M(ti−1) = i− 1) dx (14)

=
∫ ∞

0

(
λ0θti−1 + 1

λ0θ(ti−1 + x) + 1

)1/θ

dx
0<θ<1=

λ0θti−1 + 1
λ0(1− θ) .

While Kuo and Yang used the generic mean value func-
tion (12) only for the unification of NHPP-II models, we
find that taking defective distribution functions into account
allows us to include NHPP-I models as well. According
to equation (4) the relationshipR(t | 0,M(0) = 0) =
exp (−µ(t)) holds for all NHPP models. Consequently,
H(t) in equation (12) is nothing but the distribution func-
tion of the first TTF:H(t) = 1 − R(t | 0,M(0) = 0) =
FX1(t). This result shows that both NHPP-II models and
NHPP-I models can be unified via the mean value function

µ(t) = − ln[1− FX1(t)]. (15)

If a non-defective TTF distributionFX1(t) is plugged into
this equation, then an NHPP-II model is obtained. A de-
fective distributionFX1(t), on the other hand, leads to an
NHPP-I model.

4. Truncating Poisson distributions

4.1. Truncating the distribution of the number of
inherent faults

From equation (10) we see that for an NHPP-I model
at the beginning of testing the probability that even infinite
testing will lead to no failure is given by

lim
x→∞

R(x | 0,M(0) = 0) = exp (−ν) . (16)

According to equation (11) the conditional probability for
no inherent software fault given that no failure has occurred
at the beginning of testing is

P (N = 0 |M(0) = 0) =
ν0

0!
exp(−ν) = exp(−ν). (17)

This is identical to the unconditional probabilityP (N = 0),
sinceM(0) = 0 with probability one.

The equality of (16) and (17) suggests that the defective-
ness of the distribution of the time to first failure can be
healed by removing the possibility that the number of in-
herent software faults is zero.

2Musa et al. [17, p. 291] correctly point out that the mean time to failure
only exists forθ < 1. However, their equation for calculatingE(Xi) in
this case does not seem to be correct.
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In a different context, Trivedi [21, p. 261] proposes to do
this by left-truncating the distribution ofN . The probability
mass function of the zero-truncated Poisson distribution is

P (N = n) =
νn

n!
exp(−ν)

1− exp(−ν)
=
νn

n!
1

exp(ν)− 1
(18)

for n = 1, 2, ..., and its expected value is given by

E(N) =
∞∑
n=1

n · ν
n

n!
exp(−ν)

1− exp(−ν)
=

ν

1− exp(−ν)
. (19)

Adopting this idea to our problem leads to the following
reliability of the software in the interval(0, x], bearing in
mind thatM(0) = 0:

R(x | 0,M(0) = 0)

=
∞∑
n=1

[1−G(x)]n · ν
n

n!
exp(−ν)

1− exp(−ν)

=
exp(−ν)

1− exp(−ν)
· {exp [ν(1−G(x))]− 1}

=
exp [ν(1−G(x))]− 1

exp (ν)− 1
. (20)

Since this reliability expression approaches zero asx→∞,
the defectiveness of the distribution of the time to first fail-
ure has indeed been mended.

Truncating the distribution of the number of inherent
faults implicitly replaces the original transition rate from
state 0 to state 1 given by (9) with the following one con-
nected to the reliability function (20):

r0(t) =
−dR(t | 0,M(0) = 0)/dt

R(t | 0,M(0) = 0)

=
νg(t)

1− exp [−ν(1−G(t))]
.

The transition rates between the other states of the counting
process{M(t) | t ≥ 0} remain unchanged, however. This
can be seen by studying the reliability of the software after
the failure numberi− 1 ≥ 1 has occurred at timeti−1. The
reliability in the interval(ti−1, ti−1 + x] is derived as

R(x | ti−1,M(ti−1) = i− 1)

=
P (M(ti−1 + x)−M(ti−1) = 0 ∧M(ti−1) = i− 1)

P (M(ti−1) = i− 1)

=
[∑∞

n=i−1

(
1−G(ti−1+x)

1−G(ti−1)

)n−(i−1) (
n
i−1

)
G(ti−1)i−1

×[1−G(ti−1)]n−(i−1) · νnn! · exp(−ν)
1−exp(−ν)

]

÷
[∑∞

n=i−1

(
n
i−1

)
G(ti−1)i−1[1−G(ti−1)]n−(i−1)

×νnn! · exp(−ν)
1−exp(−ν)

]

= exp(−νG(ti−1 + x) + νG(ti−1))
= exp(−µ(ti−1 + x) + µ(ti−1)) (21)

for i−1 ≥ 1. This result is identical to equation (4), the reli-
ability in the original NHPP model. Therefore, fori−1 ≥ 1
the transition ratesri−1(t) connected to equation (21) are
the same as in (9). Adapting the generic NHPP-I model
with mean value function (6) by zero-truncating the distri-
bution ofN leads to a new family of SRGMs, which we
will refer to as “first-stage truncated models”. The counting
processes connected to these models feature the common
structure shown in Figure 3.

Sincer0(t) differs from all the other transition rates, the
model family does not belong to the class of NHPP models,
andM(t) does not follow a Poisson distribution. Rather,
the probability forM(t) = 0 is given by

P (M(t) = 0) =
exp [ν(1−G(t))]− 1

exp (ν)− 1
,

while the probabilities forM(t) taking values greater than
zero are

P (M(t) = m)

=
∞∑
n=m

(
n

m

)
G(t)m[1−G(t)]n−m · ν

n

n!
exp(−ν)

1− exp(−ν)

=
(νG(t))m

m!
· exp(−νG(t))

1− exp(−ν)

for m ≥ 1. From this probability mass function, we derive
the generic mean value function of the first-stage truncated
models as

µ(t) =
∞∑
m=1

m· (νG(t))m

m!
·exp(−νG(t))
1− exp(−ν)

=
νG(t)

1− exp(−ν)
.

Obviously, truncating the distribution of the number of in-
herent faults scales the original mean value function (6) by
the factor(1− exp(−ν))−1 > 1. Specifically, the expected
number of failure occurrences after an infinite amount of
testing islimt→∞ µ(t) = ν/(1− exp(−ν)), which is ex-
actly the same as the expected number of inherent faults
(19) connected to the zero-truncated Poisson distribution.

Since the transition rates and reliability functions at-
tached to the states 1, 2, ... of the counting process are not
affected by the truncation, the distributions of the times to
second, third, ... failure are still defective. In the follow-
ing section, we investigate how the defectiveness ofall TTF
distributions can be mended.
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 Figure 3. The counting process connected to
a first-stage truncated model
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4.2. Truncating the conditional distributions of the
number of faults remaining

From Section 4.1 we can see that the defectiveness of the
distribution of the time to first failure in NHPP-I models is
caused by the fact that as long as no failure has occurred
- i.e., as long as the counting process resides in state 0 - it
is possible that the software does not contain any fault at
all. Truncating the Poisson distribution ofN , the number of
inherent faults, fixes this problem.

More generally, equation (11) tells us that the conditional
distribution ofN −M(t) | M(t) = i − 1 is Poisson. The
meaning of this is as follows: The number of faults cur-
rently remaining in the software, calculated as the differ-
ence between the number of initial faults and the number of
previous failure occurrences (the actual state of the count-
ing process), follows a Poisson distribution. Since the Pois-
son distribution always assigns a non-zero probability to the
value 0, after the correction of the(i − 1)st fault there is a
chance that the software is fault-free.

Left-truncating all the conditional distributions ofN |
M(t) = i−1 therefore seems to be a natural extension to the
approach employed in the last section. The zero-truncated
conditional distributions have the probability mass func-
tions

P (N = n |M(t) = i− 1) (22)

=
[ν(1−G(t))]n−(i−1)

(n− (i− 1))!
· 1

exp(ν(1−G(t)))− 1

for i − 1 ≥ 0, n ≥ i. For i − 1 = 0 and t = 0, equa-
tion (22) specializes to the probability mass function of the
zero-truncated (unconditional) distribution ofN , equation
(18). Fori − 1 > 0, as soon as the(i − 1)st failure has
been experienced the truncated conditional probability mass
function (22) rules out the possibility that the number of in-
herent faults was merelyi−1. The reliability in the interval
(ti−1, ti−1 + x] is then given by

R(x | ti−1,M(ti−1) = i− 1)

=
∞∑

n=i

P (W = 0 | N = n,M(ti−1) = i− 1)

×P (N = n |M(ti−1) = i− 1)

=
∞∑

n=i

(
1−G(ti−1 + x)

1−G(ti−1)

)n−(i−1)

× [ν(1−G(ti−1))]n−(i−1)

(n− (i− 1))!
· 1

exp(ν(1−G(ti−1)))− 1

=
exp(ν(1−G(ti−1 + x)))− 1

exp(ν(1−G(ti−1)))− 1
(23)

for i − 1 ≥ 0, where the random variableW denotes
M(ti−1+x)−M(ti−1). Regardless the previous number of

failuresi − 1, reliability function (23) approaches zero for
x → ∞. Therefore, all distributionsFX1(x), FX2(x), ...
are non-defective. Unlike the truncation of only the uncon-
ditional distribution ofN , truncating each conditional dis-
tribution mends all TTF distributions. Moreover, since the
truncation is carried out at each state of the counting pro-
cess, the transition ratesr0(t), r1(t), ... connected to equa-
tion (23) are all identical

ri−1(t) =
νg(t)

1− exp(−ν(1−G(t))

for i− 1 ≥ 0. The structure of the counting process related
to the family of “all-stages truncated models” is shown in
Figure 4.

This model family belongs to the class of NHPP mod-
els, because all transition rates are identical. The number
of failure occurrences at timet, M(t), follows a Poisson
distribution with expected value

µ(t) = − ln(R(t | 0,M(0) = 0))

= ln
[

exp(ν)− 1
exp[ν(1−G(t))]− 1

]
. (24)

Sinceµ(t) → ∞ for t → ∞, the models are NHPP-II
models. This result is not unexpected. The zero-truncated
conditional probability mass functions (22) ensure that re-
gardless the previous number of failure occurrences there is
always at least one undiscovered fault remaining in the soft-
ware. Due to the non-defectiveness ofG(t) each fault will
eventually lead to a failure. Consequently, there is no upper
bound for the expected number of failures to be experienced
during infinite testing.

From the unifying mean value function (15) we can de-
rive the family of all-stages truncated models by plugging
in the generic non-defective distribution function of the time
to first failureFX1(t) = [1−exp(−νG(t))]/[1−exp(−ν)].
The structure of this distribution is similar to the one of the
coverage function in the software reliability models with
a time-varying testing-effort, cf. equation (8). However,
while the latter one is defective, our time to first failure
distribution is non-defective because of the normalizing de-
nominator.
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 Figure 4. The counting process connected to
an all-stages truncated model
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5. Defective TTF distributions in other models

In Section 2 we have seen that the distribution of the time
to the ith failure is defective if equation (2) holds, i.e., if
the area below the transition rateri−1(t) is finite. Focus-
ing on NHPP models, our investigations in Section 3 have
shown that due to the equality of all transition rates and
the failure intensity the defectiveness of the TTF distribu-
tions is linked to the asymptotic behavior of the mean value
function: All TTF distributions are defective for NHPP-
I models, while they are all proper for NHPP-II models.
In this section we will briefly discuss the question which
other sub-classes of CTMC models may feature defective
TTF distributions. Our classification criteria are the time-
dependence and/or state-dependence of the transition rates
on the one hand and the fact whether a model belongs to
the finite-failures category or the infinite-failures category
on the other hand. (Models in which the transition rates
are neither time- nor state-dependent are too simplistic to
model software reliability growth, and we therefore omit
them.) In Figure 5 sub-classes containing models with at
least one (non-trivially) defective distribution are shaded in
gray. Moreover, examples of models are listed in italics.
The class of NHPP models, covered in Sections 3 and 4, is
shown on the left-hand side of the figure.

Let us proceed with those models for which the transi-
tion rates are not merelytime-dependent(like for the NHPP
models), butalso state-dependent. Here the asymptotic be-
havior of the mean value function does not determine the
defectiveness of the TTF distributions.

First of all, whilesomeTTF distributions of finite fail-
ures category models belonging to this class may be defec-
tive, this is not necessarily true forall TTF distributions.

time-dependence homogeneous 
CTMC models

Littlewood 
model

Moranda 
model

Jelinski-
Moranda 

model

Goel-Okumoto 
model

Musa-Okumoto 
model 

state-dependence

first-stage 
truncated models

NHPP-I models

NHPP-II models

all-stages 
truncated models

finite 
failures

category 
models

infinite 
failures

category 
models

all-but-first-stage
truncated models

modified 
Musa-Okumoto 

model

Figure 5. Classification of CTMC software re-
liability growth models

An example of such models is the family of first-stage trun-
cated models derived in Section 4.1.

Moreover, it is even possible that all TTF distributions of
a finite failures category model are proper, as the example of
the Littlewood model [14] shows. This model proposes that
the software initially containsu0 faults, whereu0 is a fixed
but unknown integer value. All of these faults have time-
independent hazard rates that are independently sampled
from the same Gamma(α, β) distribution. These assump-
tions result in the time- and state-dependent transition rates
ri−1(t) = (u0− (i− 1))α/(β+ t) for 0 ≤ i− 1 ≤ u0− 1.
For these transition rates, equation (2) is not satisfied, and
therefore the distributions ofX1, X2, ..., Xu0 are proper.
The transition rateru0(t) is constant at zero, which means
that the entire probability mass of the distribution ofXu0+1

is attached to infinity. However this defectiveness is trivial
and can already be seen from the structure of the counting
process: The Littlewood model is one of those models for
which the CTMC representing the counting process termi-
nates at the absorbing stateu0.

Time- and state-dependent CTMC models of the infinite
failures category are not very common. However, it is not
difficult to construct examples in order to prove that such
models may or may not feature defective distributions, just
like those models of the finite failures category. “Inverting”
the structure of the first-stage truncated models in Figure 3
by setting the transition rate out of state0 to r0(t) = νg(t)
and all other transition rates tor1(t) = r2(t) = ... =
νg(t)/{1 − exp[−ν(1 − G(t))]}, whereG(t) is again a
non-defective distribution function andg(t) is its derivative,
results in a model in which both the failure intensity

λ(t) = νg(t) · P (M(t) = 0)

+
νg(t)

1− exp[−ν(1−G(t))]
· P (M(t) > 0)

= νg(t) exp(−νG(t)) +
νg(t)[1− exp(−νG(t))]
1− exp[−ν(1−G(t))]

=
νg(t)(1− exp(−ν))

1− exp[−ν(1−G(t))]

and mean value function

µ(t) = (1− exp(−ν)) · ln
[

exp(ν)− 1
exp[ν(1−G(t))]− 1

]

are scaled versions of the respective functions attached to
the family of all-stages truncated models. Obviously,µ(t)
approaches infinity fort → ∞. Moreover, our previous
analyses have shown that the TTF distribution related to the
transition rater0(t) is defective, while this is not the case for
all other TTF distributions. Therefore, this generic “all-but-
first-stage truncated model” belongs to the infinite failures
category and contains exactly one defective distribution.
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An infinite failures category model in which all TTF
distributions are proper can be derived from the Musa-
Okumoto model by settingr0(t) = λ0θ/(λ0θt+1). The re-
liability in the interval(0, x] implied by this transition rate,
R(x | 0,M(0) = 0) = (λ0θx + 1)−1, approaches zero
for x → ∞ . Therefore, the distribution of the time to first
failure is not defective. All other transition rates are kept
identical to the failure intensity (13) of the original model.
Since the Musa-Okumoto model is an NHPP-II model, the
TTF distributions related to these transition rates are proper
as well. For the modified model the failure intensity be-
comes

λ(t) =
λ0θ

(λ0θt+ 1)2
+

λ2
0θt

(λ0θt+ 1)2
=
λ0θ + λ2

0θt

(λ0θt+ 1)2
,

which leads to the mean value function

µ(t) =
1
θ

ln(λ0θt+ 1) +
λ0θt− λ0t

λ0θt+ 1
.

As expected, this modified Musa-Okumoto model is indeed
of the infinite failures category.

The last class of CTMC models are those for which the
transition rates aremerely state-dependent. Examples in-
clude both finite failures category models like the Jelinski-
Moranda model [10] and infinite failures category models
like Moranda’s geometric model [16]. Due to the time-
homogeneity, all these models share the common property
that all transition rates are constant over time. As a conse-
quence, for each failurethat can occur at allequation (2)
does not hold, and the TTF distribution is non-defective.
The italicized qualification in the last sentence is required in
order to allow for the fact that homogeneous CTMC models
of the finite failures category necessarily feature an absorb-
ing state at which the Markov chain terminates. As seen in
the discussion of the Littlewood model, for the time out of
this state the entire probability mass is allocated to infinity.

6. A specific all-stages truncated model

The derivation of the all-stages truncated models in Sec-
tion 4.2 is valid for any (non-defective) coverage function
G(t). Therefore,G(t) and consequently the initial NHPP-I
model have not been specified so far. In this section, we ap-
ply our approach to the well-known Goel-Okumoto model
[5] and show how to estimate the parameters of the result-
ing all-stages truncated model. We then employ this model
for fitting and predicting a classic failure data set, and we
compare its performance to the one of the original Goel-
Okumoto model and the Musa-Okumoto model.

6.1. The truncated Goel-Okumoto model

The mean value function and the failure intensity of the
NHPP-I model introduced by Goel and Okumoto [5] are

µ(t) = ν(1−exp(−φt)) and λ(t) = νφ exp(−φt), (25)

respectively, implying the non-defective coverage function
(7). Plugging equation (7) into equation (24), we obtain
the mean value function of the all-stages truncated Goel-
Okumoto model (in the following referred to as the “trun-
cated Goel-Okumoto model” for brevity):

µ(t) = ln
[

exp(ν)− 1
exp[ν exp(−φt)]− 1

]
. (26)

Its derivative with respect to time is the failure intensity

λ(t) =
νφ exp(−φt)

1− exp[−ν exp(−φt)] . (27)

From equations (4) and (26), the reliability in the interval
(ti−1, ti−1 + x] is derived as

R(x | ti−1,M(ti−1) = i− 1)

=
exp(ν exp(−φ(ti−1 + x)))− 1

exp(ν exp(−φti−1))− 1
,

which approaches zero forx→∞. Thus, all TTF distribu-
tions are non-defective. Moreover, it can be shown that all
mean times to failure are finite: The mean time to theith

failure implied by the truncated Goel-Okumoto model is

E(Xi) =
∫ ∞

0

R(x | ti−1,M(ti−1) = i− 1) dx (28)

=
1

φ[exp(ν exp(−φti−1))− 1]

∞∑

j=1

(ν exp(−φti−1))j

j · j!

for all i. The sum in the equation converges to a finite value,
as can be seen by comparing it to the Taylor series expan-
sion of the exponential function. This means that for each
failure i = 1, 2, ... the mean time to failure is finite. Since
the summands vanish rather quickly, the mean time to fail-
ure can easily be calculated based on equation (28).

Maximum likelihood estimation (MLE) can be em-
ployed for calculating point estimates of the two model
parametersν and φ. Based on theme failure times
t1, t2, ..., tme collected while testing the software from time
0 to te (wherete may be identical to or larger thantme ), for
NHPP models the log-likelihood function to be maximized
with respect to the parameter vectorδ takes the general form
[17, p. 324]

lnL(δ; t1, ..., tme , te) =
me∑

i=1

ln(λ(ti))− µ(te). (29)

With equations (26) and (27) the log-likelihood of the trun-
cated Goel-Okumoto model becomes

lnL(ν, φ; t1, ..., tme , te)

=me ln(νφ)− φ
me∑

i=1

ti −
me∑

i=1

ln [1− exp(−ν exp(−φti))]

+ ln[exp(ν exp(−φte))− 1]− ln[exp(ν)− 1].
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6.2. Numerical example

For illustrating the application of the truncated Goel-
Okumoto model we use one of the data sets collected by
Musa and available at the web site of the Data & Analy-
sis Center for Software [3]. The data are from the 1970s,
but careful control had been applied during their collection
in order to ensure their high quality. Moreover, they have
been used before for validating new models and are there-
fore well-studied. The “System 40” data set consists of the
wall-clock times of 101 failures experienced during the sys-
tem test phase of a military application containing about
180,000 delivered object code instructions.

Estimation of the parameters of the truncated Goel-
Okumoto model is carried out according to the procedure
described in the last section. We also employ MLE for
fitting the Goel-Okumoto model and the Musa-Okumoto
model to the data set. This is done by maximizing the
log-likelihood derived from combining equations (25), (29)
and (13), (29), respectively. Figure 6 shows the develop-
ment of the cumulative number of failure occurrences over
time for System 40 as well as the mean value functions of
the three models, with parameters estimated based on the
complete data set. Obviously, the truncated Goel-Okumoto
model does the best job in fitting the actual data. This is cor-
roborated by the log-likelihood values attained by the three
models. The maximum log-likelihood value achieved by
a model during MLE can be viewed as a measure for the
possibility that the data were generated by the respective
model.
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Figure 6. (Expected) Cumulative number of
failure occurrences

Since adding parameters to a model cannot worsen its
fit, selecting the “best” model based on the log-likelihood
value would in general favor overtly complex models.
Indeed, Akaike’s [1] information criterion derived from
the Kullback-Leibler distance essentially adjusts the log-
likelihood value by penalizing for the number of model pa-
rameters. However, since all three models considered here
contain two parameters, we can simply compare the log-
likelihood values. For the Goel-Okumoto model, the trun-
cated Goel-Okumoto model and the Musa-Okumoto model,
these values are−1282.362, −1239.508 and−1251.290,
respectively. The model ranking implied by these num-
bers coincides with the visual impression given by Figure 6:
The truncated Goel-Okumoto model attains the largest log-
likelihood value and is therefore most capable in explain-
ing the collected failure data; it is followed by the Musa-
Okumoto model and the original Goel-Okumoto model.

As shown in the last section, in the truncated Goel-
Okumoto model all mean times to failure are finite. For this
data set this is also the case for the Musa-Okumoto model,
because the estimate of the parameterθ is smaller than one.
We can therefore contrast the predicted mean times to fail-
ure according to both models with the failure data. For each
model, we start out with the first five data points, estimate
the model parameters and predict the time to the sixth fail-
ure based on the parameter estimates and the fifth failure
time, using equations (14) and (28). This procedure is re-
peated, each time adding one data point, until the end of the
data set is reached. The predicted mean times to next failure
and the actual times to failure are depicted in Figure 7.
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The development in the predictedE(Xi) values is quite
similar for the two models. While the mean time to fail-
ure predictions of the truncated Goel-Okumoto model are
slightly more optimistic, they seem to be less volatile than
the ones of the Musa-Okumoto model. Moreover, the for-
mer model does not only respond to the long inter-failure
times experienced by increasing the mean times to failure
predictions (as the Musa-Okumoto model does), but it al-
ready predicts this increasing trend before the first TTF ex-
ceeding 100 hours is observed.

7. Conclusions

Defective time to failure distributions are often unreal-
istic, and they entail infinite mean times to failure, mak-
ing this metric useless. In the course of our investiga-
tions, we have been able to answer the questions listed in
the abstract: Theith time to failure distribution is defec-
tive if the transition rate into statei decreases so quickly in
time that the area below it is finite. While this can never
happen for homogeneous CTMC models, it is possible for
non-homogeneous ones. NHPP models are a special case
of the latter, and due to the equality of all transition rates
and the failure intensity, the areas below the transition rates
are related to the mean value function. If this function is
bounded ast approaches infinity, i.e., for NHPP-I models,
all time to failure distributions are defective. However, there
is a generic approach with which an NHPP-I model can be
transformed into an NHPP-II model. Its application to the
Goel-Okumoto model has turned out to be both feasible and
worthwhile, since it led us to a new SRGM with desirable
properties, including all mean times to failure being finite.
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wareversagensfällen und Softwarefehlern. In P. Mertens
and S. R̈assler, editors,Prognoserechnung, pages 459–487.
Physica, Heidelberg, 6th edition, 2005.

[8] C.-Y. Huang and S.-Y. Kuo. Analysis of incorporating logis-
tic testing-effort function into software reliability modeling.
IEEE Trans. Software Engineering, 51:261–270, 2002.

[9] C.-Y. Huang, S.-Y. Kuo, and I.-Y. Chen. Analysis of a
software reliability growth model with logistic testing-effort
function. InProc. Eighth International Symposium on Soft-
ware Reliability Engineering, pages 378–388, 1997.

[10] Z. Jelinski and P. Moranda. Software reliability research.
In W. Freiberger, editor,Statistical Computer Performance
Evaluation, pages 465–484. Academic Press, New York,
1972.

[11] S. Kotz, N. L. Johnson, and C. B. Read. Improper distri-
butions. In S. Kotz, N. L. Johnson, and C. B. Read, editors,
Encyclopedia of Statistics, volume 4, pages 25–26. John Wi-
ley & Sons, New York, 1983.

[12] L. Kuo and T. Y. Yang. Bayesian computation for nonhomo-
geneous Poisson processes in software reliability.Journal of
the American Statistical Association, 91:763–773, 1996.

[13] J. Ledoux. Software reliability modeling. In H. Pham, ed-
itor, Handbook of Reliability Engineering, pages 213–234.
Springer, London, 2003.

[14] B. Littlewood. Stochastic reliability growth: A model for
fault-removal in computer-programs and hardware-design.
IEEE Trans. Reliability, 30:313–320, 1981.

[15] D. R. Miller. Exponential order statistic models for soft-
ware reliability growth.IEEE Trans. Software Engineering,
12:12–24, 1986.

[16] P. B. Moranda. Event-altered reliability rate models for gen-
eral reliability analysis. IEEE Trans. Reliability, 28:376–
381, 1979.

[17] J. D. Musa, A. Iannino, and K. Okumoto.Software Reliabil-
ity - Measurement, Prediction, Application. McGraw-Hill,
New York, 1987.

[18] J. D. Musa and K. Okumoto. A logarithmic Poisson exe-
cution time model for software reliability measurement. In
Proc. Seventh International Conference on Software Engi-
neering, pages 230–238, 1984.

[19] H. Pham and X. Zhang. Software release policies with gain
in reliability justifying the costs.Annals of Software Engi-
neering, 8:147–166, 1999.

[20] N. D. Singpurwalla and S. P. Wilson.Statistical Methods in
Software Engineering - Reliability and Risk. Springer Series
in Statistics. Springer, New York, 1999.

[21] K. S. Trivedi. Probability and Statistics with Reliability,
Queuing, and Computer Science Applications. John Wiley
& Sons, New York, 2001.

[22] S. Yamada, J. Hishitani, and S. Osaki. Software-reliability
growth with a Weibull test-effort.IEEE Trans. Reliability,
42:100–106, 1993.

[23] S. Yamada, H. Ohtera, and H. Narihisa. Software reliability
growth models with testing-effort.IEEE Trans. Reliability,
35:19–23, 1986.

In Proc. International Conference on Dependable Systems and Networks 2005, Los Alamitos, 2005, pp. 560–569 c© IEEE 569


