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Abstract—For software, the costs of failures are not clearly costs of maintenance) are often not distinguished. When
understood. Often, these costs disappear in the costs of tie§),  calculating the “cost per fault” metric (a.k.a. “cost per
the general developments costs, or the operating expenses.  gefact”), the accumulated costs are thus divided by thé tota

In a general manufacturing context, the British Standard . . - .
BS-6143-2:1990 classifies quality-related costs into premtion number_of f‘?‘UItS removed. Using this approach, high quality
costs, appraisal costs, and failure costs. It furthermore ec-  results in high costs per fault, because the fixed costs are
ommends to identify the activities carried out within each  allocated to a small number of faults. Jones [3, p. 483]
of these categories, and to measure the costs connected with therefore harshly criticizes cost per defect as “one of the
the activities. The standard thus presents a framework for  \orst and most foolish metrics ever devised.” Obviously,
recordlr_\g and structuring costs once they have occurr_ed. direct and general costs need to be separated

In this paper, we propose an approach for structuring the ) - )
information on internal and external software failure costs For this reason, the British Standard BS-6143-2:1990
such that their development over time can be represented by [4] stresses the importance of allocating quality costs to
stochastic models. Based on these models, future failureste  activities. Following concepts of Total Quality Control][5
can be predicted. In two case studies we show how the approach  the standard classifies quality-related costs into cosfsrée
was applied in an industrial software development project. vention, appraisal, and failure; the approach is thus terme

Keywords-activity-based costing; continuous-time Markov  the prevention, appraisal and failure (PAF) model.
chain; cost prediction; Markov reward model; software failure Prevention costs can be considered investments to reduce
costs; future appraisal and failure costs. They include costsHer t
review and verification of design, for quality training, and
for quality auditing.

Crucial questions in software testing include the fol- Appraisal costs are incurred for initially checking whathe
lowing: How can testing with a limited budget ensure a product meets its quality requirements. Among the exam-
that a computing system will reliably provide the requiredples for this cost type are costs for inspections and reviews
services? What is the impact of a failure incident on the Failure costs are subdivided into internal and external
supplier and the user(s) of the software system? Theskilure costs. Internal failure costs arise when inadeguat
questions highlight the need for extending the understandi quality of the product is discovered before its ownership
of software dependability and software quality from a merehas been transferred from the supplier to the purchaser.
technical viewpoint to its economic dimension. They include the costs for failure analysis, rework and

In 2002, a large-scale study prepared for the Nationatepair, as well as for reinspection and retesting. External
Institute of Standards and Technology [1] showed that adailure costs are caused by inadequate quality discovered
economically meaningful assessment of software qualityafter transfer of ownership. Prominent examples are costs
issues can be provided if the costs of software testing aracurred for the investigation of complaints (i.e., sugpor
compared with the financial consequences of failures. Theepairs, concessions, and product liability, as well agscos
report demonstrated that improvements in the infrastrectu due to the loss of sales. Translated into the language of
for testing dependable systems require a clear undersigindi software engineering, internal failure costs arise when a
of the costs incurred by failure occurrences, as well as byault is detected in the software or a related work product
the detection and the removal of faults. during verification and validation activities, especiatiythe

However, the identification of failure costs is usually software testing phase. The financial consequences ofdailu
limited to the separate recording of the costs of fault remhov occurrences during operational software usage are ekterna
[2]. Moreover, direct expenses of a fault (like the costsfailure costs. An assessment of both types of failure ca@sis ¢
incurred for detecting and correcting the fault in the saftev  provide valuable information on how to improve processes
code) and general expenses (like the costs of testing, or thelated to prevention and appraisal in an organization.

I. INTRODUCTION
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Approaches combining the PAF model with activity- Il. THE GENERAL APPROACH

based cost_ing_are wgll—known in financial controlling of \ye propose the following six-step procedure for assess-
manufacturing industries [6]. Following Ittner [7], Karga ing, structuring, and modeling software failure costs:
Beckhaus [8] suggest an activity-based approach to measur-

ing the costs in the context of software quality assurance. 1. Define activities and assign costs.

The vast majority of models allowing the estimation |n a first step, the activities that may be required in
of software costs are regression models [9]. Based on afesponse to a failure occurrence need to be listed, together
assessment of certain key influence factors, these modelgith the costs of carrying out each of them once. Techniques
predict either costs or the number of faults; see e.g. [2] ang¢hat may help in the identification of activities include
[10]. Moreover, there is also a variety of approaches usingrainstorming, flowcharting, and interviewing [7]. Whileet
software reliability growth models for modeling qualityste  costs incurred for performing an activity include material
[11], [12]. Such approaches offer for example the possjbili in the software development context labor costs usually
to estimate the optimal release time, or to carry out a riskepresent the largest part. If employees record the timetspe
assessment of external failure costs. Their drawback is than the various activities, then these accounting records ca
the preconditions for the application of software religpil be combined with information on the frequency with which
growth models must be met. This may prohibit their adop-each activity was carried out, to derive the efforts in man-
tion in contexts where systematic testing is employed [13]days or man-hours for performing each activity once. As

The cost optimization model by Wagner [14] is basedan alternative, experts (like test managers) can come up
on the PAF approach, although it neglects prevention costsyith sustainable estimates. Experts can also help to valida
In this model, internal failure costs (as the costs related tinformation extracted from the accounting system.
the removal of faults) and external failure costs (as cobts 0 The costs incurred by an activity may depend on the
fault removal on the one hand, and costs incurred by failurgyrocess history, like the number of times the activity has
occurrences on the other hand) are considered explicithheen performed before. For instance, the costs caused by a
Although the costs of each fault may depend on the ordefailure may be a function of the number of faults detected
in which the faults are detected, a method for determiningreviously, similar to the approach by Wagner [14].
these varying costs is not in the scope of [14]. Given the process history, the costs assigned to an activity

With respect to the determination of the activities causedyre assumed to be deterministic. The activities shouldether
by failures, as well as their costs, the approach proposefbre be defined in a way lending itself to this assumption.
in this paper is similar to the ones suggested in [7] andror example, the costs of the activity “fix fault” may show a
[8]. However, we allow the relationship between failure |ot of random fluctuation because they depend on specifics
occurrences (as well as other events) and activities to bgf the respective fault; a mere coding fault is generallyezas
more complex than in [8] and in other models. For exampleto fix than a fault that was introduced in the requirements
activities like the release of a service pack may be executeghase of software development. One possible solution is to
only after a number of failures have been experienceddefine one activity for each fault type (e.g., “fix requirertsen
Moreover, activities may not be triggered for sure, but onlyfault”, “fix coding fault”). Another feasible approach, vt

with a certain probability. will be illustrated in the first case study, is to identify sub
In our approach, information is structured in a way al- activities of the activity “fix fault”.

lowing one or more continuous-time Markov chain (CTMC) ) o
models to be built. Such a model captures the dynamics of- Define activity groups.
failure occurrences and other cost-relevant events. Among Certain circumstances may require not one, but multiple
the outputs that can be generated is the predictive pratyabil activities to be carried out. For example, if a fault in the
mass function of costs incurred until some future point indocumentation is detected, this fault has to be reported
time. and fixed, and the fix then needs to be verified. Activities
The paper is structured as follows: In Section I, we caused by the same event (whether or not they are performed
describe the general approach of assessing and structurisgnultaneously) are combined in activity groups. Sinceesom
the information in a way suitable for model building. Sentio activities may have to be carried out more than once, the
[l illustrates the application of the method by means of twonumber of “repeated” executions of an activity in an acjivit
case studies. While the first case study is a rather simplgroup has to be specified; this number may depend on the
example of analyzing internal failure costs (see Sectiorprocess history. If, for example, a software developer fixes
[lI-A), the second one, dealing with external failure costsknown faults in a software product only when preparing a
shows how even complex dependencies between failurservice pack, then the number of times that the activity “fix
occurrences and activities can be assessed and modeled ($a@lt” is performed is equal to the number of faults detected
Section IlI-B). Section IV concludes the paper and gives asince the last service pack. To simplify the overall strugtu
brief outlook on our future research. we assume that even activities that are carried out alone upo
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Figure 1. Entity relationship model of the elements usechandeneral approach

an event are assigned to an activity group consisting of this A convenient way of representing the elements used
one activity. in our approach is the entity relationship model shown
in Fig. 1. We employ the classic notation by Chen [15],

. I . including attributes for both entity sets and relationship
As mentioned before, activities are performed in responsg.is Besides a unique identifier (ED), events have a

to events, like the detection of a fault. For each of the égtiv description (Evdesc) and an occurrence rate (Eate)
groups defined in_the I"_“St ste_p, We now need to identify ON@ach event can trigger one or multiple activity groups;
or more events triggering this activity group. Furthermore likewise, an activity group may be triggered by several

the rate with which each ev_enF occurs (i.e, the expggted NUMEyents. A triggering probability (Tprob) is attributed to
per of occurrences per unit time) has to be specified. Th'?—,\ach “triggers” relationship between one event and one
information can be galn(_ad from fault databases, Cusmmeéctivity group. For our purposes, we only require an agfivit
support records, etc. Agam,the occurrence rates may depe@roup to have a unique key (A®). It could be further

on the process h|st0r_y. Th|_s "?"_'OWS us, for example, 10,4 racterized by a description, etc. Each activity growguise
account for an increasing reliability of the software produ . +-in at least one activity. The attribute @eq gives

by making the fault detection rate a decreasing functioqhe number of times that a certain activity contained in
of the number of faults detected (and fixed) before. In the

i S ) . a specific activity group is carried out after this activit
following, we will implicitly assume that given the previsu P y group y

hi diff ind denthaoh group has been triggered. Like events, each activity has an
process _|story, ! _e_re_znt events_o_c_cur indepen enthaone e nifier (Ac_ID) and a description (Aalesc); moreover,
other. Suitable definition of activities, activity groupmd

i o it is assigned the costs for carrying out the activity once
events can help to ensure that this assumption is a goo c_costs). Each activity may be contained in more than
approximation to reality. In general, the identification of one_activity group

events requiring adequate response ma: ide the refinement
v guiring au b y gul I In Figure 1, Evrate, Tr prob, Caq freq, and Accosts are

of the activities and activity groups defined in the previous, . . S .
steps y group P in italics, indicating that these attributes may depend on

the process history. More specifically, they are allowed to
4. Define trigger probabilities. depend on the following pieces of information:

The occurrence of an event may sometimes, but not
always, cause the activities in one activity group to be
carried out. For each combination of an event and an
activity group, we therefore allow the specification of a
trigger probability between zero and one; this probability
may depend on the previous history of the process. Such
probabilities can be based on recorded data (e.g., by
using the relative frequency with which an activity group
was performed upon the occurrence of an event). Since
the trigger probabilities are related to the policies of the
company (e.g., “how likely is it that we will distribute
a service pack after a fault of a certain type has been
reported?”), experts like the support personnel should be
able to provide realistic values even if data are not avkdlab

3. Define events.

« “Global” counters of the occurrences of events since
the beginning of the prediction period (e.g., the total
number of failure occurrences).

« “Local” counters of the occurrences of events (e.g.,
the number of failure occurrences since the last service
pack was shipped).

« “Global” counters of the triggering of activity groups
since the beginning of the prediction period (e.g., the
total number of service packs released).

« “Local” counters of the triggering of activity groups
(e.g., assuming that patches are distributed only after a
number of faults of a certain severity have been found,
the number of patches distributed since the last service
pack was shipped).
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In a first step, the dependence of an attribute on the rethus depends on the number of events and “triggers” rela-

spective history information can be formulated in words;tionships, as well as on the pieces of information influegcin

however, it needs to be possible to translate this formardati the rates, probabilities, frequencies, and costs in thefset

into a mathematical equation. We will see examples for thaelements induced by the respective subset of events.

in the second case study. Each CTMC model can for example be used to derive the
The entity relationship model suggests that the elements iprobability mass function of the number of times a certain

our approach as well as their relationships can convesientlactivity group will be triggered within a given predictioep

be represented in tables. In fact, this is how we will presentiod. Moreover, by assigning cost values (directly follagi

the information in the case studies. from the information assessed during steps 1 to 4) to the

states, the models are extended into Markov reward models

[16]. Based on these models, the probability mass function

The information gathered and structured in the four pre<f costs incurred in the prediction period can be calculated
ceding steps suffices for building a continuous-time Markov

chain (CTMC) model [16] that captures the occurrence of I1l. CASE STUDIES
events as well as the triggering of activity groups over time

Basically, it is possible to consider all events and agtivit efr';\ilure costs of the same platform-independent commercial

groups in one comprehensive model. However, the mod

. . . . off-the-shelf software product developed by an IT company

size (i.e., the number of states in the CTMC) increases . .
. . " - with approximately 200 employees. The software features a

dramatically with each additional activity group and event

. . . . client-server architecture and interfaces to severalreate
included, slowing down or even precluding calculations. o . ; ,
. . ; ."applications, especially databases. Nine developers aad fi
It is therefore advisable to build not one comprehensive . : .
. employees in the test and support team are in charge of this
model, but as many separate submodels as possible. The ' o2
. . . : . software product. In order to protect confidential inforimat
information collected during the preceding steps helps in .
- a|l cost values and event rates have been normalized.
deciding whether or not a set of events can be separate
into an independent CTMC model. A. Modeling internal failure costs

Consider a subset of the events defined before, for which h | of the f q del and di
this question is to be answered. We use the term “set of The goal of the first case study was to model and predict

elements induced” by this subset to refer to the set the internal failure costs incurred during the development
elements consisting of of a standard release of the software product. Fault data

. . collected during the first two months of the observation
1) the events under consideration; . . . .
— Y ) X . period served as a basis for the prediction of the internal
2) all “triggers” relationships that these events are in-;_. -
: - ) failure costs for the remaining three months before release
volved in, and the related activity groups;

3) all “contains” relationships that these activity groups.':Or implementingstep 10f the general approach described

: . L in Section Il, a detailed list of (sub-)activities potetiia
are involved in, as well as the related activities. . . X
triggered upon the detection of a fault was compiled based

The S.UbSEt of events can be modeled separately if thg, the current knowledge of the relevant processes. The
following two conditions are met: activities identified are shown in Table I. The related costs
a) The rates Evate, the probabilities Tprob, the fre-  \yere estimated by the project manager and the team leads of
quencies Cgfreq, and the costs Acosts of all ele-  the test and development teams. Rejected fault report(fal
ments in the induced set of elements do not depend opositives) were considered appraisal costs, not failustsco
the history of any element not included in the inducedye therefore excluded them from our analysis.
set of elements; and In step 2 the definition of activity groups, we first

b) The histories of the events and triggers in the induce@arified under which circumstances which activities are
set of elements do not influence any rates, probabili-

ties, frequencies, or costs of elements not included in

5. Partition set of events for independent modeling.

Both case studies described in this section address the

Table |

the induced set of elements. ACTIVITIES
Based on this criterion, the set of all events defined should
be partitioned into as many subsets as possible. [Ac_ID | Ac_desc | Ac_costs |
) Acl | Report failure 0.083
6. Build and use CTMC models. Ac2 Analyze report 0.500
For each of the subsets into which the set of all events Ac3 | Fix requirements 0.167
was partitioned in step 5, an individual CTMC model is now Acd | Fix design : 0.750
tructed. The states in such a CTMC count the number AcS_| Fix implementation 3.500
Con_s : 7 . Ac6 Fix documentation 0.125
of times that activity groups have been triggered, as well as Ac7 | Verify fix 0.167

the occurrences of relevant events. The model complexity
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Ac3 N AcT Table 11I
Ac6 N Ac7 — EVENTS
ANAT MEVID [ Ev.desc [ Evrate |
Acl N Ac2 Evl | Suggestion by tester A1 =7.33
Ac5 N AcT Ev2 | Detection of implementation fault ndt Az = 11.47
requiring change in documentation
Figure 2. Venn diagram of activities Ev3 Detection of design fault not A3 = 1.18

requiring change in documentation
Ev4 | Detection of requirements fault not | Ay = 1.69

o ] ) requiring change in documentation
jointly carried out. For any observed failure a report has tg— EvS | Detection of mere documentation s = 2.54

be written by the tester (Acl) and analyzed by a develope fault
(Ac2). The result of the analysis either pinpoints the faultf Ev6 | Detection of implementation fault ¢ = 5.07
that caused the failure, or it results in the decision tottifea requiring change in documentation
report as a suggestion, which may be dealt with in a future Ev7 | Detection of design fault requiring | A7 = 0.52
! SO r change in documentation
release. In the latter case, no further activities are rsecgs Ev8 | Detection of requirements fault =075
In the former case, however, some kind of fix and thus its requiring change in documentation
subsequent verification (Ac7) is required. On the one hand,
either Ac5, or Ac5 and Ac4, or Ac5, Ac4 and Ac3 may be
carried out: A fault in a requirement always involves fixing

the requirement and the related design; a fault in the desig'® _Caff'ed out exactly once when the group is triggered all
always involves a fix of the implementation. On the otherentries in the right column are equal to one. The second case

hand, and independently of the other fixes necessary, a ﬁ§(tudy in Section IlI-B will demonstrate that these entries

of the documentation (Ac6) might be required. Based on thé"ay differ from thls_v-alue. .

set of all faults the Venn diagram in Fig. 2 is a graphical Each of th? activity groups obv.|ously represepts the
representation of these relationships between the negess&Ctivities required upon the detection of a certain type
activities. Each intersection between the sets in this Ven@' fault. Assuming that different fault types are detected

diagram was identified as an activity group. The set of ali"dependently of each other, we therefore identified one
activity groups thus forms a partition of the set of all fault triggering event for each of the activity groups AG1 to AGS,

Table Il displays all “contains” relationships between aC_namely the detection of a fault of the respective type. These

. L . L events defined followingtep 3of the general approach are
tivity groups and activities. Since the activities in eacoup listed in Table Ill. The fgultpdetectiongrates forF()eF;ch tegg

event were obtained from a detailed analysis of the faul dat
Table Il collected during the first two months of tests.
“CONTAINS” RELATIONSHIPS The structure of the “triggers” relationships as well as the
trigger probabilities identified followingtep 4of the general
approach are very simple: Event&viggers activity group

=

[AG_IDJAc_ID[Co_freq|

relL 22; i [AG_ID|Ac_ID|Co_freq AGi with probability one { = 1,2, ..., 8); see Table IV.
AG? | Acl T AG6 | Acl 1 None of the rates, probabilities, frequencies and costs
Ac2 1 ﬁgg 1 defined in this case study depend on the process history.
Ac5 1 A 1 Therefore, the set of elements induced by each individual
Ac7 | 1 A7 | 1 event meets the conditions a) and b) formulatestép 5 As
AG3 [ Acl 1 AG7 [ Acl | 1
Ac2 1 Ac2 1
Ac4 1 Acd 1 Table IV
Ac5 1 ACS 1 “TRIGGERS' RELATIONSHIPS
Ac7 1 AcB 1
peatac | 1 A7 | 1 [Ev.ID [ AG_ID | Tr_prob |
AC3 1 AG8 | Acl 1 Evi AGL 1
Acd | 1 Acz | 1 EvZ | AG2 i
A | 1 Ac3 | 1 Ev3 | AG3 i
Ac7 | 1 el Evd | AGA4 1
e | A | 1 Ev6 | AGE | I
Ac7 1
Ac6 1 Ev7 AG7 1
Ac7 1 Ev8 AG8 1
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- T N, - M. - Ny as pointed out before, the general approach proposed in
@ @ @ @ o Section Il does allow the formulation of event rates that

depend on the process history. In the second case study we
Figure 3. Continuous-time Markov chain for event Ev5 will make use of this property.

B. Modeling external failure costs

a consequence, the occurrence of each of these events can bdhe second case study was aimed at identifying cost
modeled separately. Since the occurrence rates are constaliivers of external failure costs incurred for the software
and the trigger probabilities are one, the CTMC model forproduct, at determining their magnitude, as well as at ngpkin
Evi counts how often the related activity group Attas been  predictions for the current release. To this end we used
triggered; it features the structure shown in Fig. 3ifer 5. information collected for the previous release both during
The number of times an activity group will be triggered in atesting and in the field, as well as in the testing phase of the
given prediction period thus follows a Poisson distribatio current version.
from this distribution, the distribution of the costs incen Interviews with experts revealed three different kinds of
by this activity group is easily calculated. The distriloutiof ~ reactions to faults reported by customers (thus classified
the total internal failure costs is derived as the convoluti as faults of type 1, 2, and 3): Type 1 faults have severe
of the cost distributions for all activity groups. From this consequences potentially affecting many customers; they
predictive distribution measures like the mean, the vagan require the immediate distribution of a service pack. Due
the median, and further quantiles can be computed. to the high costs incurred by such a service pack, costs

Based on the data collected during the first two month®f further activities (like customer support for a type 1
of testing, we calculated the predictive distribution of in fault) can be neglected. Type 2 faults do not necessitate
ternal failure costs for several future points in time. Fig. the immediately distribution of fix; when a type 2 fault
compares the development of the 95% prediction intervals reported, the development team fixes it in the current
and the median of the predictive distribution with the attua main branch of the software. However, when a service pack
cumulative costs incurred in the subsequent three monthdeeds to be built, these fixes are ported from the main
of testing before release. While up to about eight unitdoranch. While customers tolerate a limited number of known
of additional test effort the actual costs were within thetype 2 faults in the software, the larger the number of
limits of the confidence interval, the last two observationsopen issues, the more vigorously customers will demand a
were smaller than its lower bound. Further analysis of theservice pack. Type 3 faults are critical, but they only affec
fault data revealed a shift in the fault type proportions:one customer. If such a fault is reported, the customer is
in the late testing phase, suggestions exceeded any othRfovided with a patch. In addition to the detection of these
fault type. A potential reason for this phenomenon mightthree types of faults, customers address the support team
be the tendency to under-evaluate the importance of fault¢hen further issues arise, e.g., misunderstandings of the
shortly before a release date. However, our investigatisn h documentation, or problems with respect to the usability of
shown that a mere one percent of these unfixed faults wer@e software product. Beyond customer support these issues
later reported by customers. The increasing proportion oflo not require any immediate action.
suggestions therefore does indeed seem to indicate a growthTabIe V lists the identified activities together with cost
in the reliability of the system during test. estimates made by the experts, thus completitep 1 of

This discussion shows that our specification of constanthe general approach. o _
event rates was overly simplistic: While the occurrence rat Based on the above description, we also carriecstef 2
of suggestions increased over time, the rates with whictf@nd defined the activity groups shown in Table VI. Note that

other fault types were detected became smaller. However,

Table V
ACTIVITIES

1]
g 8 [[Ac_ID [ Ac_desc [ Ac_costs|
E o° ° Acl | Build and distribute service pack 200
% S L Ac? Customer support for type 2 fault 1
s Ac3 | Analyze and fix type 2 fault in main 4
E § ] ,.-',"'?-" ) 0 actual costs branch
2 el - -~ predictive median Ac4 Adapt and test fix for type 2 fault in 4
E N 95% prediction interval service pack
3 5 B . 8 10 1 Acb Cugtomer sppport for type 3 fault 1

Cumulative test effort Ac6 Build and distribute patch 12

Ac7 Customer support for further issue 1

Figure 4. Predicted and actual internal failure costs
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Table VI Table VIl

“CONTAINS” RELATIONSHIPS “TRIGGERS' RELATIONSHIPS
[ AG_ID | Ac_ID [ Cao freq | [ Ev_ID | AG_ID | Tr_prob |

AG1 Acl 1 Evl AG1 1
Ac4 j Ev2 AG2 1

AG2 Ac2 1 C_ j—z
AC3 1 AG1 pj = max (0, kiz)
Ac6 1 Ev4 AG4 1

AG4 Ac7 1

The trigger probabilities defined step 4are displayed in

each service pack includes ported fixes forjdiype 2 faults ~ Table VIII. The probabilityp; that the detection of a type 2
detected since the last releages a local event counter, a fault triggers a service pack accounts for the aforemeation
part of the process history. customer behavior: For up to type 2 faults since the last

An obvious choice fostep 3is to identify the detection service pack, the probability that a service pack is dem@dnde
of faults of the various types, as well as the emergencés zero. The probability then increases linearly with each
of further issues as events; see Table VII. The event ratedetected type 2 fault and reaches one when = type 2
were estimated based on the available data of the previodaults have been detected. It depends on the same local event
release and the current test phase. All rates are expressedunterj as the “contains” relationship between AG1 and
in terms of the number of occurrences per unit of softwareAc4. For our specific case study, experts determined45
execution time. Since occurrences of Ev1 are rare, data oand k£ = 60 to be reasonable values.
this event were scarce\; was therefore estimated by the |dentifying the “sets of elements induced” for Evl, Ev2,
field occurrence rate of failures caused by type 1 faults folev3, and Ev4 instep 5shows that the set§Evi, Ev2,
the previous release. {Ev3} and{Ev4} fulfill the conditions a) and b). The events

Unlike type 3 faults, type 2 faults had shown a decreasingev3 and Ev4 can thus be modeled separately in the same
detection rate during the operational phase of the previoumanner as the events in the first case study. However, the
release, which could be modeled well with Moranda’s geo+contains” relationship between AG1 and Ac4, contained
metric de-eutrophication software reliability model [IWe  in the “set of elements induced” by Ev1, dependsjothe
assumed that for the current release the occurrence rate pfimber of Ev2 occurrences since the last service pack. Thus,
Ev2 had the functional form related to this model, shownEv1 and Ev2 must be modeled together.
in Table VII. In this function, the global event countér Fig. 5 gives an idea of the CTMC for events Evl and
represents the total number of type 2 faults detected sincgy2, built in step 6 note that due to the three-dimensional
the prediction origin. As geometric ratewe chose).9798,  structure of the CTMC only some of the transitions to higher
the estimate obtained based on the field data of the previoygyels can be shown in the two-dimensional diagram. Each
release. The initial failure rate) was estimated as the state(i, j,1) is characterized by the total number of service
residual detection rate of type 2 faults during the currenpacksi as well as the number of type 2 faults detected
test phase, multiplied by the rate adaptation factor (i.e.since the last service pagkand in totall. Based on this
the detection rate during the field divided by the detectionnformation, the corresponding number of times that the
rate during testing) established for this fault type based o activities Acl to Ac4 were executed and thus the external
the previous release; the value obtained was- 4.3991.  fajlure costs related to each state are easily calculatesgt
Similarly, A; was estimated by multiplying the (average) ratecosts can be attached to a state as its reward rate. In Fig. 5
with which type 3 faults were detected during the currentihe states are arranged in levels. Levatontains all states
test phase with the rate adaptation factor for type 3 fanlts i for which/—j, the number of type 2 faults detected previous

the previous release. to the last service pack, equals
At time 0, the prediction origin, the process starts in state
Table VII (0,0,0). The transient state probabilities (and based on them
EVENTS the probability mass function of the external failure cakis
(EvD [ Ev.desc B A | to eyents Evl gnd Ev2_) after a given predlctlon period are
T T Dolecior STabos Tt e =001 obtained numerically via the uniformization (a.k.a. ramdo
v etection of a ype _ fau L ization) algorithm [18], [19]. We implemented this algdiit
Ev2 | Detection of a type 2 fault or in R 1201, Emoloving the Matri K 217 all d us t
Ev3 | Detection of a type 3 fault | A3 = 0.0817 in R [20]. Employing the Matrix pa(_:_age[ ]a_ OWea us to
Ev4 | Emergence of a further issug \s = 3.4511 make use of the fact that the transition probability matfix o

the discrete-time Markov chain subordinated to the CTMC
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Figure 5. Continuous-time Markov chain for events Evl an@ Ev
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2000
I

spaced moments in calendar time. Fig. 6 shows their de-

velopment together with the related predictive medians and

95% prediction intervals calculated based on the inforomati

i available before release. All but one observation lie waithi
the interval bounds.

- From Fig. 6, the shape of the predictive probability mass
- functions does not become clear. We therefore display the
predictive probability mass function for the total extdrna
AN failure costs incurred after 50 calendar time units in Fig. 7
. It The five peaks discernible in this multimodal distribution
R ° correspond to the creation of 0, 1, 2, 3, and 4 service packs,
. . ° 0 actual costs respectively.
RSP It - - - predictive median
oder™ 95% prediction interval IV. CONCLUSIONS

T T T T T T T T

0 10 20 30 40 50 60 70 The possibility to model failure costs is an asset for any
Time since release test or release manager. In this paper, we presented a struc-
tured approach to assessing and modeling costs connected
Figure 6. Predicted and actual external failure costs with software failures. By re'ating events to activity gm
it helps identify cost drivers and understand the dynamics
of cost-relevant events. Its prediction capabilities vallan
is sparse. We were thus able to obtain results even for anproved cost-driven planning and controlling of software
huge number of states, truncating the CTMC in Fig. 5 inprojects. The approach can help in adequately allocating
regions that are highly unlikely to be reached. For exampleresources.
the calculations shown below are based on a CTMC for In our future research, we will investigate further ways to
events Ev1 and Ev2 witk08986 states; only832520 entries  specifying adequate model parameters in the absence of data
in the relatec208986 x 208986 transition probability matrix  from previous releases of the software product. For example
are larger than zero. classifying the faults detected in the current test phasg ma
The predictive distribution of the total external failure help draw conclusions about the fault detection rates durin
costs is again obtained as the convolution of the costhe remainder of testing, or in the field.
distributions following from the three CTMC submodels for Moreover, we are planning to combine our approach
the sets{Ev1, EvZ, {Ev3}, and{Ev4}. with models for appraisal costs, to support justified redeas
After the release of the current software version, the actuadecisions based on the minimization of expected overall
total external failure costs were determined at seven gven| COSts.

1000 1500
|
\

Cumulative external failure costs
500
\
\
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