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Abstract—For software, the costs of failures are not clearly
understood. Often, these costs disappear in the costs of testing,
the general developments costs, or the operating expenses.

In a general manufacturing context, the British Standard
BS-6143-2:1990 classifies quality-related costs into prevention
costs, appraisal costs, and failure costs. It furthermore rec-
ommends to identify the activities carried out within each
of these categories, and to measure the costs connected with
the activities. The standard thus presents a framework for
recording and structuring costs once they have occurred.

In this paper, we propose an approach for structuring the
information on internal and external software failure costs
such that their development over time can be represented by
stochastic models. Based on these models, future failure costs
can be predicted. In two case studies we show how the approach
was applied in an industrial software development project.

Keywords-activity-based costing; continuous-time Markov
chain; cost prediction; Markov reward model; software failure
costs;

I. I NTRODUCTION

Crucial questions in software testing include the fol-
lowing: How can testing with a limited budget ensure
that a computing system will reliably provide the required
services? What is the impact of a failure incident on the
supplier and the user(s) of the software system? These
questions highlight the need for extending the understanding
of software dependability and software quality from a mere
technical viewpoint to its economic dimension.

In 2002, a large-scale study prepared for the National
Institute of Standards and Technology [1] showed that an
economically meaningful assessment of software quality
issues can be provided if the costs of software testing are
compared with the financial consequences of failures. The
report demonstrated that improvements in the infrastructure
for testing dependable systems require a clear understanding
of the costs incurred by failure occurrences, as well as by
the detection and the removal of faults.

However, the identification of failure costs is usually
limited to the separate recording of the costs of fault removal
[2]. Moreover, direct expenses of a fault (like the costs
incurred for detecting and correcting the fault in the software
code) and general expenses (like the costs of testing, or the

costs of maintenance) are often not distinguished. When
calculating the “cost per fault” metric (a.k.a. “cost per
defect”), the accumulated costs are thus divided by the total
number of faults removed. Using this approach, high quality
results in high costs per fault, because the fixed costs are
allocated to a small number of faults. Jones [3, p. 483]
therefore harshly criticizes cost per defect as “one of the
worst and most foolish metrics ever devised.” Obviously,
direct and general costs need to be separated.

For this reason, the British Standard BS-6143-2:1990
[4] stresses the importance of allocating quality costs to
activities. Following concepts of Total Quality Control [5],
the standard classifies quality-related costs into costs for pre-
vention, appraisal, and failure; the approach is thus termed
the prevention, appraisal and failure (PAF) model.

Prevention costs can be considered investments to reduce
future appraisal and failure costs. They include costs for the
review and verification of design, for quality training, and
for quality auditing.

Appraisal costs are incurred for initially checking whether
a product meets its quality requirements. Among the exam-
ples for this cost type are costs for inspections and reviews.

Failure costs are subdivided into internal and external
failure costs. Internal failure costs arise when inadequate
quality of the product is discovered before its ownership
has been transferred from the supplier to the purchaser.
They include the costs for failure analysis, rework and
repair, as well as for reinspection and retesting. External
failure costs are caused by inadequate quality discovered
after transfer of ownership. Prominent examples are costs
incurred for the investigation of complaints (i.e., support),
repairs, concessions, and product liability, as well as costs
due to the loss of sales. Translated into the language of
software engineering, internal failure costs arise when a
fault is detected in the software or a related work product
during verification and validation activities, especiallyin the
software testing phase. The financial consequences of failure
occurrences during operational software usage are external
failure costs. An assessment of both types of failure costs can
provide valuable information on how to improve processes
related to prevention and appraisal in an organization.
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Approaches combining the PAF model with activity-
based costing are well-known in financial controlling of
manufacturing industries [6]. Following Ittner [7], Karg and
Beckhaus [8] suggest an activity-based approach to measur-
ing the costs in the context of software quality assurance.

The vast majority of models allowing the estimation
of software costs are regression models [9]. Based on an
assessment of certain key influence factors, these models
predict either costs or the number of faults; see e.g. [2] and
[10]. Moreover, there is also a variety of approaches using
software reliability growth models for modeling quality costs
[11], [12]. Such approaches offer for example the possibility
to estimate the optimal release time, or to carry out a risk
assessment of external failure costs. Their drawback is that
the preconditions for the application of software reliability
growth models must be met. This may prohibit their adop-
tion in contexts where systematic testing is employed [13].

The cost optimization model by Wagner [14] is based
on the PAF approach, although it neglects prevention costs.
In this model, internal failure costs (as the costs related to
the removal of faults) and external failure costs (as costs of
fault removal on the one hand, and costs incurred by failure
occurrences on the other hand) are considered explicitly.
Although the costs of each fault may depend on the order
in which the faults are detected, a method for determining
these varying costs is not in the scope of [14].

With respect to the determination of the activities caused
by failures, as well as their costs, the approach proposed
in this paper is similar to the ones suggested in [7] and
[8]. However, we allow the relationship between failure
occurrences (as well as other events) and activities to be
more complex than in [8] and in other models. For example,
activities like the release of a service pack may be executed
only after a number of failures have been experienced.
Moreover, activities may not be triggered for sure, but only
with a certain probability.

In our approach, information is structured in a way al-
lowing one or more continuous-time Markov chain (CTMC)
models to be built. Such a model captures the dynamics of
failure occurrences and other cost-relevant events. Among
the outputs that can be generated is the predictive probability
mass function of costs incurred until some future point in
time.

The paper is structured as follows: In Section II, we
describe the general approach of assessing and structuring
the information in a way suitable for model building. Section
III illustrates the application of the method by means of two
case studies. While the first case study is a rather simple
example of analyzing internal failure costs (see Section
III-A), the second one, dealing with external failure costs
shows how even complex dependencies between failure
occurrences and activities can be assessed and modeled (see
Section III-B). Section IV concludes the paper and gives a
brief outlook on our future research.

II. T HE GENERAL APPROACH

We propose the following six-step procedure for assess-
ing, structuring, and modeling software failure costs:

1. Define activities and assign costs.

In a first step, the activities that may be required in
response to a failure occurrence need to be listed, together
with the costs of carrying out each of them once. Techniques
that may help in the identification of activities include
brainstorming, flowcharting, and interviewing [7]. While the
costs incurred for performing an activity include material,
in the software development context labor costs usually
represent the largest part. If employees record the time spent
on the various activities, then these accounting records can
be combined with information on the frequency with which
each activity was carried out, to derive the efforts in man-
days or man-hours for performing each activity once. As
an alternative, experts (like test managers) can come up
with sustainable estimates. Experts can also help to validate
information extracted from the accounting system.

The costs incurred by an activity may depend on the
process history, like the number of times the activity has
been performed before. For instance, the costs caused by a
failure may be a function of the number of faults detected
previously, similar to the approach by Wagner [14].

Given the process history, the costs assigned to an activity
are assumed to be deterministic. The activities should there-
fore be defined in a way lending itself to this assumption.
For example, the costs of the activity “fix fault” may show a
lot of random fluctuation because they depend on specifics
of the respective fault; a mere coding fault is generally easier
to fix than a fault that was introduced in the requirements
phase of software development. One possible solution is to
define one activity for each fault type (e.g., “fix requirements
fault”, “fix coding fault”). Another feasible approach, which
will be illustrated in the first case study, is to identify sub-
activities of the activity “fix fault”.

2. Define activity groups.

Certain circumstances may require not one, but multiple
activities to be carried out. For example, if a fault in the
documentation is detected, this fault has to be reported
and fixed, and the fix then needs to be verified. Activities
caused by the same event (whether or not they are performed
simultaneously) are combined in activity groups. Since some
activities may have to be carried out more than once, the
number of “repeated” executions of an activity in an activity
group has to be specified; this number may depend on the
process history. If, for example, a software developer fixes
known faults in a software product only when preparing a
service pack, then the number of times that the activity “fix
fault” is performed is equal to the number of faults detected
since the last service pack. To simplify the overall structure,
we assume that even activities that are carried out alone upon
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Figure 1. Entity relationship model of the elements used in the general approach

an event are assigned to an activity group consisting of this
one activity.

3. Define events.

As mentioned before, activities are performed in response
to events, like the detection of a fault. For each of the activity
groups defined in the last step, we now need to identify one
or more events triggering this activity group. Furthermore,
the rate with which each event occurs (i.e, the expected num-
ber of occurrences per unit time) has to be specified. This
information can be gained from fault databases, customer
support records, etc. Again, the occurrence rates may depend
on the process history. This allows us, for example, to
account for an increasing reliability of the software product
by making the fault detection rate a decreasing function
of the number of faults detected (and fixed) before. In the
following, we will implicitly assume that given the previous
process history, different events occur independently of each
other. Suitable definition of activities, activity groups,and
events can help to ensure that this assumption is a good
approximation to reality. In general, the identification of
events requiring adequate response may guide the refinement
of the activities and activity groups defined in the previous
steps.

4. Define trigger probabilities.

The occurrence of an event may sometimes, but not
always, cause the activities in one activity group to be
carried out. For each combination of an event and an
activity group, we therefore allow the specification of a
trigger probability between zero and one; this probability
may depend on the previous history of the process. Such
probabilities can be based on recorded data (e.g., by
using the relative frequency with which an activity group
was performed upon the occurrence of an event). Since
the trigger probabilities are related to the policies of the
company (e.g., “how likely is it that we will distribute
a service pack after a fault of a certain type has been
reported?”), experts like the support personnel should be
able to provide realistic values even if data are not available.

A convenient way of representing the elements used
in our approach is the entity relationship model shown
in Fig. 1. We employ the classic notation by Chen [15],
including attributes for both entity sets and relationship
sets. Besides a unique identifier (EvID), events have a
description (Evdesc) and an occurrence rate (Evrate).
Each event can trigger one or multiple activity groups;
likewise, an activity group may be triggered by several
events. A triggering probability (Trprob) is attributed to
each “triggers” relationship between one event and one
activity group. For our purposes, we only require an activity
group to have a unique key (AGID). It could be further
characterized by a description, etc. Each activity group needs
to contain at least one activity. The attribute Cofreq gives
the number of times that a certain activity contained in
a specific activity group is carried out after this activity
group has been triggered. Like events, each activity has an
identifier (Ac ID) and a description (Acdesc); moreover,
it is assigned the costs for carrying out the activity once
(Ac costs). Each activity may be contained in more than
one activity group.

In Figure 1, Evrate, Tr prob, Co freq, and Ac costs are
in italics, indicating that these attributes may depend on
the process history. More specifically, they are allowed to
depend on the following pieces of information:

• “Global” counters of the occurrences of events since
the beginning of the prediction period (e.g., the total
number of failure occurrences).

• “Local” counters of the occurrences of events (e.g.,
the number of failure occurrences since the last service
pack was shipped).

• “Global” counters of the triggering of activity groups
since the beginning of the prediction period (e.g., the
total number of service packs released).

• “Local” counters of the triggering of activity groups
(e.g., assuming that patches are distributed only after a
number of faults of a certain severity have been found,
the number of patches distributed since the last service
pack was shipped).
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In a first step, the dependence of an attribute on the re-
spective history information can be formulated in words;
however, it needs to be possible to translate this formulation
into a mathematical equation. We will see examples for that
in the second case study.

The entity relationship model suggests that the elements in
our approach as well as their relationships can conveniently
be represented in tables. In fact, this is how we will present
the information in the case studies.

5. Partition set of events for independent modeling.

The information gathered and structured in the four pre-
ceding steps suffices for building a continuous-time Markov
chain (CTMC) model [16] that captures the occurrence of
events as well as the triggering of activity groups over time.
Basically, it is possible to consider all events and activity
groups in one comprehensive model. However, the model
size (i.e., the number of states in the CTMC) increases
dramatically with each additional activity group and event
included, slowing down or even precluding calculations.
It is therefore advisable to build not one comprehensive
model, but as many separate submodels as possible. The
information collected during the preceding steps helps in
deciding whether or not a set of events can be separated
into an independent CTMC model.

Consider a subset of the events defined before, for which
this question is to be answered. We use the term “set of
elements induced” by this subset to refer to the set of
elements consisting of

1) the events under consideration;
2) all “triggers” relationships that these events are in-

volved in, and the related activity groups;
3) all “contains” relationships that these activity groups

are involved in, as well as the related activities.
The subset of events can be modeled separately if the
following two conditions are met:

a) The rates Evrate, the probabilities Trprob, the fre-
quencies Cofreq, and the costs Accosts of all ele-
ments in the induced set of elements do not depend on
the history of any element not included in the induced
set of elements; and

b) The histories of the events and triggers in the induced
set of elements do not influence any rates, probabili-
ties, frequencies, or costs of elements not included in
the induced set of elements.

Based on this criterion, the set of all events defined should
be partitioned into as many subsets as possible.

6. Build and use CTMC models.

For each of the subsets into which the set of all events
was partitioned in step 5, an individual CTMC model is now
constructed. The states in such a CTMC count the number
of times that activity groups have been triggered, as well as
the occurrences of relevant events. The model complexity

thus depends on the number of events and “triggers” rela-
tionships, as well as on the pieces of information influencing
the rates, probabilities, frequencies, and costs in the setof
elements induced by the respective subset of events.

Each CTMC model can for example be used to derive the
probability mass function of the number of times a certain
activity group will be triggered within a given prediction pe-
riod. Moreover, by assigning cost values (directly following
from the information assessed during steps 1 to 4) to the
states, the models are extended into Markov reward models
[16]. Based on these models, the probability mass function
of costs incurred in the prediction period can be calculated.

III. C ASE STUDIES

Both case studies described in this section address the
failure costs of the same platform-independent commercial
off-the-shelf software product developed by an IT company
with approximately 200 employees. The software features a
client-server architecture and interfaces to several external
applications, especially databases. Nine developers and five
employees in the test and support team are in charge of this
software product. In order to protect confidential information
all cost values and event rates have been normalized.

A. Modeling internal failure costs

The goal of the first case study was to model and predict
the internal failure costs incurred during the development
of a standard release of the software product. Fault data
collected during the first two months of the observation
period served as a basis for the prediction of the internal
failure costs for the remaining three months before release.
For implementingstep 1of the general approach described
in Section II, a detailed list of (sub-)activities potentially
triggered upon the detection of a fault was compiled based
on the current knowledge of the relevant processes. The
activities identified are shown in Table I. The related costs
were estimated by the project manager and the team leads of
the test and development teams. Rejected fault reports (false
positives) were considered appraisal costs, not failure costs;
we therefore excluded them from our analysis.

In step 2, the definition of activity groups, we first
clarified under which circumstances which activities are

Table I
ACTIVITIES

Ac ID Ac desc Ac costs
Ac1 Report failure 0.083
Ac2 Analyze report 0.500
Ac3 Fix requirements 0.167
Ac4 Fix design 0.750
Ac5 Fix implementation 3.500
Ac6 Fix documentation 0.125
Ac7 Verify fix 0.167
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Figure 2. Venn diagram of activities

jointly carried out. For any observed failure a report has to
be written by the tester (Ac1) and analyzed by a developer
(Ac2). The result of the analysis either pinpoints the fault
that caused the failure, or it results in the decision to treat the
report as a suggestion, which may be dealt with in a future
release. In the latter case, no further activities are necessary.
In the former case, however, some kind of fix and thus its
subsequent verification (Ac7) is required. On the one hand,
either Ac5, or Ac5 and Ac4, or Ac5, Ac4 and Ac3 may be
carried out: A fault in a requirement always involves fixing
the requirement and the related design; a fault in the design
always involves a fix of the implementation. On the other
hand, and independently of the other fixes necessary, a fix
of the documentation (Ac6) might be required. Based on the
set of all faults the Venn diagram in Fig. 2 is a graphical
representation of these relationships between the necessary
activities. Each intersection between the sets in this Venn
diagram was identified as an activity group. The set of all
activity groups thus forms a partition of the set of all faults.

Table II displays all “contains” relationships between ac-
tivity groups and activities. Since the activities in each group

Table II
“CONTAINS” RELATIONSHIPS

AG ID Ac ID Co freq
AG1 Ac1 1

Ac2 1
AG2 Ac1 1

Ac2 1
Ac5 1
Ac7 1

AG3 Ac1 1
Ac2 1
Ac4 1
Ac5 1
Ac7 1

AG4 Ac1 1
Ac2 1
Ac3 1
Ac4 1
Ac5 1
Ac7 1

AG5 Ac1 1
Ac2 1
Ac6 1
Ac7 1

AG ID Ac ID Co freq
AG6 Ac1 1

Ac2 1
Ac5 1
Ac6 1
Ac7 1

AG7 Ac1 1
Ac2 1
Ac4 1
Ac5 1
Ac6 1
Ac7 1

AG8 Ac1 1
Ac2 1
Ac3 1
Ac4 1
Ac5 1
Ac6 1
Ac7 1

Table III
EVENTS

Ev ID Ev desc Ev rate
Ev1 Suggestion by tester λ1 = 7.33

Ev2 Detection of implementation fault not λ2 = 11.47
requiring change in documentation

Ev3 Detection of design fault not λ3 = 1.18
requiring change in documentation

Ev4 Detection of requirements fault not λ4 = 1.69
requiring change in documentation

Ev5 Detection of mere documentation λ5 = 2.54
fault

Ev6 Detection of implementation fault λ6 = 5.07
requiring change in documentation

Ev7 Detection of design fault requiring λ7 = 0.52
change in documentation

Ev8 Detection of requirements fault λ8 = 0.75
requiring change in documentation

are carried out exactly once when the group is triggered all
entries in the right column are equal to one. The second case
study in Section III-B will demonstrate that these entries
may differ from this value.

Each of the activity groups obviously represents the
activities required upon the detection of a certain type
of fault. Assuming that different fault types are detected
independently of each other, we therefore identified one
triggering event for each of the activity groups AG1 to AG8,
namely the detection of a fault of the respective type. These
events defined followingstep 3of the general approach are
listed in Table III. The fault detection rates for each trigger-
event were obtained from a detailed analysis of the fault data
collected during the first two months of tests.

The structure of the “triggers” relationships as well as the
trigger probabilities identified followingstep 4of the general
approach are very simple: Event Evi triggers activity group
AGi with probability one (i = 1, 2, . . . , 8); see Table IV.

None of the rates, probabilities, frequencies and costs
defined in this case study depend on the process history.
Therefore, the set of elements induced by each individual
event meets the conditions a) and b) formulated instep 5. As

Table IV
“T RIGGERS” RELATIONSHIPS

Ev ID AG ID Tr prob
Ev1 AG1 1
Ev2 AG2 1
Ev3 AG3 1
Ev4 AG4 1
Ev5 AG5 1
Ev6 AG6 1
Ev7 AG7 1
Ev8 AG8 1
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Figure 3. Continuous-time Markov chain for event Ev5

a consequence, the occurrence of each of these events can be
modeled separately. Since the occurrence rates are constant
and the trigger probabilities are one, the CTMC model for
Evi counts how often the related activity group AGi has been
triggered; it features the structure shown in Fig. 3 fori = 5.
The number of times an activity group will be triggered in a
given prediction period thus follows a Poisson distribution;
from this distribution, the distribution of the costs incurred
by this activity group is easily calculated. The distribution of
the total internal failure costs is derived as the convolution
of the cost distributions for all activity groups. From this
predictive distribution measures like the mean, the variance,
the median, and further quantiles can be computed.

Based on the data collected during the first two months
of testing, we calculated the predictive distribution of in-
ternal failure costs for several future points in time. Fig.4
compares the development of the 95% prediction interval
and the median of the predictive distribution with the actual
cumulative costs incurred in the subsequent three months
of testing before release. While up to about eight units
of additional test effort the actual costs were within the
limits of the confidence interval, the last two observations
were smaller than its lower bound. Further analysis of the
fault data revealed a shift in the fault type proportions:
in the late testing phase, suggestions exceeded any other
fault type. A potential reason for this phenomenon might
be the tendency to under-evaluate the importance of faults
shortly before a release date. However, our investigation has
shown that a mere one percent of these unfixed faults were
later reported by customers. The increasing proportion of
suggestions therefore does indeed seem to indicate a growth
in the reliability of the system during test.

This discussion shows that our specification of constant
event rates was overly simplistic: While the occurrence rate
of suggestions increased over time, the rates with which
other fault types were detected became smaller. However,
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Figure 4. Predicted and actual internal failure costs

as pointed out before, the general approach proposed in
Section II does allow the formulation of event rates that
depend on the process history. In the second case study we
will make use of this property.

B. Modeling external failure costs

The second case study was aimed at identifying cost
drivers of external failure costs incurred for the software
product, at determining their magnitude, as well as at making
predictions for the current release. To this end we used
information collected for the previous release both during
testing and in the field, as well as in the testing phase of the
current version.

Interviews with experts revealed three different kinds of
reactions to faults reported by customers (thus classified
as faults of type 1, 2, and 3): Type 1 faults have severe
consequences potentially affecting many customers; they
require the immediate distribution of a service pack. Due
to the high costs incurred by such a service pack, costs
of further activities (like customer support for a type 1
fault) can be neglected. Type 2 faults do not necessitate
the immediately distribution of fix; when a type 2 fault
is reported, the development team fixes it in the current
main branch of the software. However, when a service pack
needs to be built, these fixes are ported from the main
branch. While customers tolerate a limited number of known
type 2 faults in the software, the larger the number of
open issues, the more vigorously customers will demand a
service pack. Type 3 faults are critical, but they only affect
one customer. If such a fault is reported, the customer is
provided with a patch. In addition to the detection of these
three types of faults, customers address the support team
when further issues arise, e.g., misunderstandings of the
documentation, or problems with respect to the usability of
the software product. Beyond customer support these issues
do not require any immediate action.

Table V lists the identified activities together with cost
estimates made by the experts, thus completingstep 1of
the general approach.

Based on the above description, we also carried outstep 2
and defined the activity groups shown in Table VI. Note that

Table V
ACTIVITIES

Ac ID Ac desc Ac costs
Ac1 Build and distribute service pack 200
Ac2 Customer support for type 2 fault 1
Ac3 Analyze and fix type 2 fault in main 4

branch
Ac4 Adapt and test fix for type 2 fault in 4

service pack
Ac5 Customer support for type 3 fault 1
Ac6 Build and distribute patch 12
Ac7 Customer support for further issue 1
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Table VI
“CONTAINS” RELATIONSHIPS

AG ID Ac ID Co freq
AG1 Ac1 1

Ac4 j

AG2 Ac2 1
Ac3 1

AG3 Ac5 1
Ac6 1

AG4 Ac7 1

each service pack includes ported fixes for allj type 2 faults
detected since the last release.j is a local event counter, a
part of the process history.

An obvious choice forstep 3is to identify the detection
of faults of the various types, as well as the emergence
of further issues as events; see Table VII. The event rates
were estimated based on the available data of the previous
release and the current test phase. All rates are expressed
in terms of the number of occurrences per unit of software
execution time. Since occurrences of Ev1 are rare, data on
this event were scarce.λ1 was therefore estimated by the
field occurrence rate of failures caused by type 1 faults for
the previous release.

Unlike type 3 faults, type 2 faults had shown a decreasing
detection rate during the operational phase of the previous
release, which could be modeled well with Moranda’s geo-
metric de-eutrophication software reliability model [17]. We
assumed that for the current release the occurrence rate of
Ev2 had the functional form related to this model, shown
in Table VII. In this function, the global event counterl

represents the total number of type 2 faults detected since
the prediction origin. As geometric rater we chose0.9798,
the estimate obtained based on the field data of the previous
release. The initial failure rateφ was estimated as the
residual detection rate of type 2 faults during the current
test phase, multiplied by the rate adaptation factor (i.e.,
the detection rate during the field divided by the detection
rate during testing) established for this fault type based on
the previous release; the value obtained wasφ = 4.3991.
Similarly,λ3 was estimated by multiplying the (average) rate
with which type 3 faults were detected during the current
test phase with the rate adaptation factor for type 3 faults in
the previous release.

Table VII
EVENTS

Ev ID Ev desc Ev rate
Ev1 Detection of a type 1 fault λ1 = 0.0115

Ev2 Detection of a type 2 fault φrl

Ev3 Detection of a type 3 fault λ3 = 0.0817

Ev4 Emergence of a further issueλ4 = 3.4511

Table VIII
“T RIGGERS” RELATIONSHIPS

Ev ID AG ID Tr prob
Ev1 AG1 1
Ev2 AG2 1

AG1 pj = max

“

0, j−z

k−z

”

Ev3 AG3 1
Ev4 AG4 1

The trigger probabilities defined instep 4are displayed in
Table VIII. The probabilitypj that the detection of a type 2
fault triggers a service pack accounts for the aforementioned
customer behavior: For up toz type 2 faults since the last
service pack, the probability that a service pack is demanded
is zero. The probability then increases linearly with each
detected type 2 fault and reaches one whenk > z type 2
faults have been detected. It depends on the same local event
counterj as the “contains” relationship between AG1 and
Ac4. For our specific case study, experts determinedz = 45
andk = 60 to be reasonable values.

Identifying the “sets of elements induced” for Ev1, Ev2,
Ev3, and Ev4 instep 5 shows that the sets{Ev1, Ev2},
{Ev3} and{Ev4} fulfill the conditions a) and b). The events
Ev3 and Ev4 can thus be modeled separately in the same
manner as the events in the first case study. However, the
“contains” relationship between AG1 and Ac4, contained
in the “set of elements induced” by Ev1, depends onj, the
number of Ev2 occurrences since the last service pack. Thus,
Ev1 and Ev2 must be modeled together.

Fig. 5 gives an idea of the CTMC for events Ev1 and
Ev2, built in step 6; note that due to the three-dimensional
structure of the CTMC only some of the transitions to higher
levels can be shown in the two-dimensional diagram. Each
state(i, j, l) is characterized by the total number of service
packs i as well as the number of type 2 faults detected
since the last service packj and in totall. Based on this
information, the corresponding number of times that the
activities Ac1 to Ac4 were executed and thus the external
failure costs related to each state are easily calculated; these
costs can be attached to a state as its reward rate. In Fig. 5
the states are arranged in levels. Levelv contains all states
for which l−j, the number of type 2 faults detected previous
to the last service pack, equalsv.

At time 0, the prediction origin, the process starts in state
(0, 0, 0). The transient state probabilities (and based on them
the probability mass function of the external failure costsdue
to events Ev1 and Ev2) after a given prediction period are
obtained numerically via the uniformization (a.k.a. random-
ization) algorithm [18], [19]. We implemented this algorithm
in R [20]. Employing the Matrix package [21] allowed us to
make use of the fact that the transition probability matrix of
the discrete-time Markov chain subordinated to the CTMC
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Figure 5. Continuous-time Markov chain for events Ev1 and Ev2
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Figure 6. Predicted and actual external failure costs

is sparse. We were thus able to obtain results even for a
huge number of states, truncating the CTMC in Fig. 5 in
regions that are highly unlikely to be reached. For example,
the calculations shown below are based on a CTMC for
events Ev1 and Ev2 with208986 states; only832520 entries
in the related208986×208986 transition probability matrix
are larger than zero.

The predictive distribution of the total external failure
costs is again obtained as the convolution of the cost
distributions following from the three CTMC submodels for
the sets{Ev1, Ev2}, {Ev3}, and{Ev4}.

After the release of the current software version, the actual
total external failure costs were determined at seven evenly-
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Figure 7. Predictive probability mass function of cumulative external
failure costs after 50 calendar time units

spaced moments in calendar time. Fig. 6 shows their de-
velopment together with the related predictive medians and
95% prediction intervals calculated based on the information
available before release. All but one observation lie within
the interval bounds.

From Fig. 6, the shape of the predictive probability mass
functions does not become clear. We therefore display the
predictive probability mass function for the total external
failure costs incurred after 50 calendar time units in Fig. 7.
The five peaks discernible in this multimodal distribution
correspond to the creation of 0, 1, 2, 3, and 4 service packs,
respectively.

IV. CONCLUSIONS

The possibility to model failure costs is an asset for any
test or release manager. In this paper, we presented a struc-
tured approach to assessing and modeling costs connected
with software failures. By relating events to activity groups,
it helps identify cost drivers and understand the dynamics
of cost-relevant events. Its prediction capabilities allow an
improved cost-driven planning and controlling of software
projects. The approach can help in adequately allocating
resources.

In our future research, we will investigate further ways to
specifying adequate model parameters in the absence of data
from previous releases of the software product. For example,
classifying the faults detected in the current test phase may
help draw conclusions about the fault detection rates during
the remainder of testing, or in the field.

Moreover, we are planning to combine our approach
with models for appraisal costs, to support justified release
decisions based on the minimization of expected overall
costs.
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