
Performance Assurance via Software Rejuvenation:
Monitoring, Statistics and Algorithms

Alberto Avritzer,∗ Andre Bondi∗, Michael Grottke,†

Kishor S. Trivedi†, and Elaine J. Weyuker‡

Abstract

We present three algorithms for detecting the need for
software rejuvenation by monitoring the changing values of
a customer-affecting performance metric, such as response
time. Applying these algorithms can improve the values
of this customer-affecting metric by triggering rejuvenation
before performance degradation becomes severe. The algo-
rithms differ in the way they gather and use sample values
to arrive at a rejuvenation decision. Their effectiveness is
evaluated for different sets of control parameters, includ-
ing sample size, using simulation. The results show that
applying the algorithms with suitable choices of control pa-
rameters can significantly improve system performance as
measured by the response time.

1 Introduction

The increasing complexity of large industrial systems
has created a need for sophisticated software monitoring to
ensure performance and availability. We have introduced
in [1] and [2] a new software rejuvenation approach that
can ensure stable performance of degradable systems. Our
approach was designed to distinguish between performance
degradation that occurs as a result of burstiness in the ar-
rival process and software degradation that occurs as a re-
sult of software aging. This is done by frequently monitor-
ing the metric of greatest interest to the customer and trig-
gering software rejuvenation whenever severe degradation
is detected. We will refer to this metric as the customer-
affecting metric. Software aging has been observed in com-
plex systems and has been described extensively in the lit-
erature [3, 8, 9, 15]. We will describe a case study using

∗Alberto Avritzer and Andre Bondi are with Siemens Corpo-
rate Research, Princeton, NJ 08540. E-mail: {alberto.avritzer,
andre.bondi}@siemens.com
†Michael Grottke and Kishor Trivedi are with Duke University, Depart-

ment of Electrical and Computer Engineering, Durham, NC 27708-0291.
E-mail: {grottke,kst}@ee.duke.edu. This work was supported by a fel-
lowship within the Postdoc Program of the German Academic Exchange
Service.
‡Elaine Weyuker is with AT&T Labs - Research, 180 Park Avenue,

Florham Park, NJ 07932. E-mail: weyuker@research.att.com

a large complex industrial e-commerce system for which
a severe fault that led to significant performance degrada-
tion eluded detection for several months. This happened
because the metric of greatest interest to the customer, re-
sponse time, was not being monitored, while metrics of less
interest including CPU utilization and memory usage were
being tracked. More detail about the fault can be found
in [4].

Motivated by this experience, we developed software re-
juvenation algorithms to track the customer-affecting met-
ric, in this case response time (RT). In this paper we propose
three new algorithms for software rejuvenation that use dif-
ferent sampling approaches to determine whether the RT
has severly degraded. Our first algorithm, calledstatic soft-
ware rejuvenation with averaging, is a variant of thestatic
software rejuvenationalgorithm introduced in [1]. In this
new algorithm, the observed values of the RT are averaged
over a fixed sample size. Our second algorithm, calledstatic
software rejuvenation with averaging and sample acceler-
ation, reduces the sample size requirement when a degra-
dation in performance is detected. For this algorithm, the
time to compute the average of the RT is proportional to
the sample size and so the overall time required to trigger a
software rejuvenation is reduced when a significant perfor-
mance degradation is detected.

Our third algorithm is a direct application of the cen-
tral limit theorem. Whenever the average of the samples
exceeds the target quantile of the normal distribution, this
algorithm will trigger a software rejuvenation. In this pa-
per we evaluate the domain of applicability of the three al-
gorithms by simulating their performance using the large
e-commerce system mentioned above.

The outline of our paper is as follows. Section 2 pro-
vides a survey of related work. In Section 3 we present our
model of software rejuvenation which has been designed to
identify performance degradation using observations of the
RT. In Section 4 we present three new software rejuvenation
algorithms and the analytical motivation for our algorithms.
Section 5 presents simulation results for the e-commerce
system, while Section 6 contains our conclusions and sug-
gestions for future research.

In Proc. International Conference on Dependable Systems and Networks 2006, pages 435-444, 2006. c© IEEE 435

2 Related work

Avritzer and Weyuker [3] introduced an approach to
restoring degraded software to full capacity that was tai-
lored particularly for telecommunications or other similar
systems that are characterized by predictably periodic traf-
fic. It is common for telecommunications operating com-
panies to collect detailed traffic pattern data, thereby al-
lowing them to identify system degradations and the sub-
sequent restoration of their systems to full capacity by exe-
cuting software procedures that will free allocated memory,
release database locks, and reinitialize other operating sys-
tem tables.

Bobbio et al. [5] presented a method for the quantitative
analysis of software rejuvenation policies. Their approach
assumed that it was possible to quantify system degradation
by monitoring a metric that was correlated with it. They
defined a maximum degradation threshold level and intro-
duced two rejuvenation policies based on this threshold. A
risk-based approach was used for their first policy, defining
a confidence level for the metric. Rejuvenation was per-
formed with a probability proportional to this confidence
level. They also introduced a deterministic policy for which
rejuvenation was performed as soon as the threshold level
was reached. The approach we study in this paper is closely
related to this second policy but uses multiple threshold lev-
els so that we can distinguish between bursts of arrivals and
soft failures. When asoft failureoccurs, the system remains
operational, but in a degraded mode with the available sys-
tem capacity greatly reduced.

In [1], a software rejuvenation approach for single server
systems that tracks the value of the RT to determine the
best times to perform software rejuvenation was introduced.
In [2], it was extended by evaluating the applicability of the
algorithms to clusters of hosts. The three rejuvenation al-
gorithms that we consider in this paper base the decision
to trigger rejuvenation on averages of several observations,
rather than on the value of the RT itself.

A comparison of analytical models using Markov regen-
erative processes and measurement approaches using time
series analysis, trend detection and estimation for software
rejuvenation was presented in [15]. This paper provides
motivation for the development of practical policies based
on actual measurements.

Other papers of interest include [11], in which service
failures were identified by monitoring the RT, and [6],
which described the methodology used by IBM Director
software for proactive software rejuvenation using statisti-
cal estimation of resource exhaustion.

3 The system and the simulation model

The subject of our case studies is a multi-tier distributed
e-commerce system written in Java. It consists of 16 CPUs

with a Java virtual machine (JVM) heap size of 3 GB. The
maximum acceptable RT is 10 seconds, and the system must
be able to handle up to 1.6 transactions/second. The two
primary factors that were found to impact performance were
the variability that occurred when garbage collections took
place, and kernel overhead.

The system model used to generate the experimental re-
sults is a slightly modified version of the one used in [4].

1. Whenever a thread arrives at the JVM, a new thread
arrival is scheduled with an exponentially distributed
inter-arrival time (with arrival rateλ), and the number
of active threads is incremented by one.

2. The thread queues for a CPU.

3. The CPU processing time of the thread is sampled
from an exponential distribution with service rateµ =
0.2 transactions/second.

4. If the number of threads executing in parallel is greater
than the specified threshold of50 threads, an overhead
is incurred. In order to account for this, the processing
time of the thread is multiplied by a factor of2.0.

5. As soon as one of the16 CPUs is obtained, the thread
attempts to allocate10 MB of memory.

6. If the remaining memory heap size is less than the
memory threshold of100 MB, a full garbage collection
event is scheduled and all running threads are delayed
by 60 seconds, the amount of time needed to perform
a full garbage collection on a3 GB Heap.

7. When a thread completes service, the total RT of the
related job, consisting of the waiting time plus the pro-
cessing time, is computed.

8. Based on the observed RTs, an algorithm decides
whether software rejuvenation should be carried out.
We will discuss several versions of a rejuvenation al-
gorithm in the next section. When the system is reju-
venated, all threads in execution are terminated and all
resources held by threads are released. This includes
both the JVM memory heap and busy CPUs.

The goal of our software rejuvenation algorithms is to mon-
itor the RT and do a capacity restoration whenever the RT
has severely deteriorated. During rejuvenation, all CPU
and memory queues are cleared. The cost is defined to be
the percentage of transactions lost during the rejuvenation
event.

We assume that the RT can be sampled frequently and
that the average and standard deviation of the RT when
the system is operating without performance degradation,
serves as the basis for the system performance requirement.

In Proc. International Conference on Dependable Systems and Networks 2006, pages 435-444, 2006. c© IEEE 436

4 The rejuvenation algorithms

4.1 Analytical motivation

Rejuvenation must be carried out often enough to avoid
severe performance slowdowns, yet not unnecessarily, since
rejuvenation incurs costs such as lost transactions. The al-
gorithm that triggers rejuvenation must depend on recently
observed values of the RT to decide whether the system be-
havior has deteriorated sufficiently from normal behavior to
justify the costs of rejuvenation. While this idea conforms
to our intuition, we have to make precise what we mean by
“normal” system behavior and when the observed behavior
is “significantly” different from normal. Abstracting from
the garbage collections and the kernel overhead, which are
the two characteristics that were responsible for the perfor-
mance slowdowns, the simulation model described in the
last section becomes a first-come, first-served (FCFS) queu-
ing model withc = 16 parallel servers in which both the
interarrival times and the service times follow an exponen-
tial distribution. For such anM/M/c queuing model, the
number of jobs in the system can be depicted by the Marko-
vian state diagram shown in Fig. 1.λ andµ represent the
arrival rate and the service rate, respectively. When the traf-
fic intensity,ρ = λ

cµ , is less than 1, the system is stable and
will eventually reach a steady state; otherwise the number
of jobs in the system tends to increase without bound. Let
the random variableXi denote the RT of a job randomly
sampled from an FCFS-M/M/c system in the steady state.
Gross and Harris [7, p. 73] derive the cumulative distribu-
tion function ofXi, as

FXi(x) = Wc · (1− exp(−µ · x)) + (1−Wc) (1)

×
[

cµ− λ

(c− 1)µ− λ
· (1− exp(−µ · x))

− µ

(c− 1)µ− λ
· (1− exp(−(cµ− λ) · x))

]
,

where

Wc = 1−
[
(cρ)c

c!
· 1
1− ρ

]
·
[

c−1∑

k=0

(cρ)k

k!
+

(cρ)c

c!
· 1
1− ρ

]−1

represents the steady-state probability that fewer thanc jobs
are present in the system.

Figure 1. State diagram of theM/M/c queuing sys-
tem

Figure 2. Xi as a phase-type distribution

Both the expected value and the variance of the RT can eas-
ily be derived from equation (1) by noting that the RT distri-
bution is a mixture of an exponential distribution and a two-
stage hypoexponential distribution, and hence is a phase-
type distribution [10, pp. 41–80] representable by a parallel
and serial combination of exponential distributions. In the
structure shown in Fig. 2, each circle stands for an exponen-
tial distribution with a hazard rate given by the expression
noted in the circle.
Applying the rules for calculating the moments of hypoex-
ponential and hyperexponential distributions [14, pp. 223-
224], we obtain the expectation ofXi,

µX := E(Xi) =
Wc

µ
+ (1−Wc) ·

[
1
µ

+
1

cµ− λ

]

=
1
µ

+
1−Wc

cµ− λ
, (2)

as well as the variance

σ2
X := V ar(Xi) =

1
µ2

+
1−W 2

c

(cµ− λ)2
. (3)

For our basicM/M/16 queuing system with a service rate
of 0.2 transactions/second, when arrival rates are below1
transaction/second, both the mean and the standard devia-
tion of the RT remain constant at5. The reason for this be-
havior is that under these low loads, the threads rarely have
to queue for a CPU. Therefore, the RT basically follows an
exponential distribution with service rateµ = 0.2 transac-
tions/second. For higher loads, the expected value and the
standard deviation start to diverge from their baseline value
of 5.

One approach might be to use the upper quantiles of the
cumulative distribution function (1) for monitoring the sys-
tem behavior and to trigger rejuvenation when the observed
RT xi exceeds some pre-determined quantile. However,
such an approach would not be robust forshort-termde-
viations in the system behavior, and we need to avoid costly
rejuvenations under such circumstances.

The static and the dynamic rejuvenation algorithms in-
troduced in [1] and [2] try to comply with this requirement
by triggering rejuvenation only after repeated occurrences
of large RTs.

In Proc. International Conference on Dependable Systems and Networks 2006, pages 435-444, 2006. c© IEEE 437

Figure 3. Response timeXi as time to absorption in
a continuous time Markov chain

Another way of coping with short-term increases in the RT
is to base the rejuvenation decision on averages calculated
from several measured values of the RT rather than on the
RT itself. This allows small numbers of subsequently ob-
served large values to be “smoothed out”. On the one hand,
this idea can be included into the rejuvenation algorithms
presented in [1] and [2]. On the other hand, it allows us to
make use of the central limit theorem, which in its simplest
form states that the averagēXn = 1

n

∑n
i=1 Xi of n inde-

pendent and identically distributed random variablesXi ap-
proaches a normal distribution asn → ∞. Therefore, ifn
is sufficiently large, we can approximate the distribution of
X̄n by a normal distribution, regardlessXi’s true distribu-
tion. We can then base the decision of whether to trigger
rejuvenation on the quantiles of the normal distribution.

How large mustn be for the normal approximation to be
“good enough”? In general, calculating the convolution ofn
random variables is difficult, hampering an examination of
how quicklyX̄n approaches the normal distribution. How-
ever, there is a simple approach for deriving the distribution
of X̄n, provided the distribution ofXi can be represented
by the distribution of the time to absorption in a Markov
chain [14]. This is the case for the RT in theM/M/c queu-
ing system. >From Fig. 2 we can derive the continuous-time
Markov chain shown in Fig. 3. Assuming that the initial
probability for being in state1 is 100%, the time to reach
absorbing state3 follows the same distribution as the RT
Xi.

To find a representation of̄Xn as a time to absorption,
we begin by multiplying all transition rates in Fig. 3 byn
and get a Markov chain in which the distribution of the time
to absorption is identical to the distribution of each individ-
ual Xi

n . This is true because all transition times in a Markov
chain are exponential and because dividing an exponentially
distributed random variable with hazard ratez by some con-
stantr yields an exponentially distributed random variable
with hazard rater · z. Therefore,X̄n = 1

n

∑n
i=1 Xi =∑n

i=1
Xi

n can be represented as the time to absorption in
the Markov chain derived by concatenatingn such Markov
chains, fusing state3 of thenth sub-chain and state1 of the
(n+1)st sub-chain into state2n+1 of the resulting Markov
chain. This is shown in Fig. 4.

Using the SHARPE [12] tool, we are able to derive the

Figure 4. Average response timēXn = 1
n

∑n
i=1 Xi

as time to absorption in a continuous-time Markov
chain

cumulative distribution function of the average RT,FX̄n
(x).

It is also possible to calculate the exact probability density
functionfX̄n

(x) via the relationship

fX̄n
(x) =

dp2n+1(x)
dx

(4)

= p2n−1(x) · nµWc + p2n(x) · n(cµ− λ),

where pi(x) is the probability that the Markov chain of
Fig. 4 is in statei at timex.

Forc = 16 servers,λ = 1.6 transactions/second andµ =
0.2 transactions/second, Fig. 5 shows how this probability
density function of the sample average approaches a normal
density asn increases. For each value ofn, the dashed curve
is the probability density function of a normal distribution
with expected value equal toµX̄n

= µX and variance equal
to σ2

X̄n
= σ2

X/n. While the full asymptotic properties only
hold for an infinite sample size, we can see that the density
of the sample average can be reasonably approximated by a
normal density for sample sizes as low as 30 or even 15.

Since we want to detect “unnaturally” long RTs, we are
especially interested in the upper tails of the distributions.
For example, an algorithm could trigger rejuvenation when-
ever the sample mean exceeds the 97.5% quantile of the
approximating normal distribution. Ideally, the false alarm
probability of such a decision rule would be 2.5%. In fact,
the probability mass thatfX̄n

(x), equation (4), allocates to
the right of the respective quantiles of the normal distribu-
tion amounts to 3.69% forn = 15 and 3.37% forn = 30.
While the false error proabilities are somewhat inflated, the
approximation seems to be good enough for our purposes.

In the simplest form of the central limit theorem, the
sampled values are assumed to be independent. Clearly, the
RTs observed in a queuing system can be highly correlated.
If the RT for a job is large because it had to queue to be
served, the same is more likely to be true for the jobs follow-
ing it, especially as the load increases. When the load is low
enough so that no queuing occurs, then the RTs follow in-
dependent and identical exponential distributions. As men-
tioned above, for anM/M/16 queuing system with an ar-
rival rate ofµ = 0.2 transactions/second, queueing starts to
have an effect for arrival rates of about1 transaction/second.

In Proc. International Conference on Dependable Systems and Networks 2006, pages 435-444, 2006. c© IEEE 438

0 5 10 15 20 25

0.
00

0.
10

0.
20

x

f x
n
(x

)
n = 1

2 4 6 8 10 12 14

0.
00

0.
10

0.
20

x

f x
n
(x

)

n = 5

2 4 6 8 10

0.
00

0.
10

0.
20

0.
30

x

f x
n
(x

)

n = 15

3 4 5 6 7 8

0.
0

0.
2

0.
4

x

f x
n
(x

)

n = 30

Figure 5. Probability density function of average re-
sponse timēXn for n=1, 5, 15, 30 and corresponding
approximating normal densitiesfN (x;µX̄n

, σ2
X̄n

);
λ = 1.6, µ = 0.2

For an arrival rate of1.6 transactions/second (the maximum
arrival rate of interest) is the correlation too strong for the
central limit theorem to be applicable? In order to investi-
gate this question, we simulated the RTs for this configu-
ration of theM/M/16 model. We obtained the simulation
model from the one described in Section 3 by abstracting
from the kernel overhead (step 4), the memory leaks (steps 5
and 6) and the rejuvenation (step 8). Five independent repli-
cations of100, 000 transactions were run. For each one, we
estimated the first-order autocorrelation coefficient as [13,
p. 26]

γ̂ =

∑99,999
i=10,001(xi+1 − x̄)(xi − x̄)

∑100,000
i=10,001(xi − x̄)2

,

wherex̄ = 1
90,000

∑100,000
i=10,001 xi. Note that the first10, 000

transactions were omitted in order to eliminate transient ef-
fects. The autocorrelation coefficient is considered to be
significantly different from zero at a confidence level of
95% if its absolute value exceeds1.96/

√
90, 000. This was

the case for only one of our five replications. As expected,
at high loads subsequent RTs can show some dependence;
however, even at the maximum load of interest the first-
order correlation seems to play a minor role. In our case,
it should therefore be possible to use a rejuvenation algo-
rithm employing the results of the central limit theorem as
an approximation, regardless of the actual system load.

4.2 Three algorithms

We now propose three new algorithms for detecting a
significant and lasting deterioration in the RT. We assume
that the service level agreement specifies the meanµX and
the standard deviationσX of the RT under normal system
behavior. Our algorithms further assume that small values
of the observed metric are better than large ones, which
is true for RT. In [1] and [2], we have introduced the so-
called static software rejuvenation algorithm. This algo-
rithm tracks the deterioration of the RT based on a bucket
metaphor. Beginning with the first of theK buckets, for
each sampled valuexi > µX , one ball is added to the
bucket, while one ball is removed ifxi ≤ µX . The bucket
is keeping a count of the difference between the number of
times the expected valueµX is exceeded and the number of
times the sampled value is less than or equal toµX . When
the number of balls in the bucket reaches its allowed depth
D, the bucket “overflows”, and we move on to the second
bucket, for which the target value used for adding/removing
balls isµX +σX . We use the indexN (= 0, 1, 2, . . . , K−1)
as a pointer to the current bucket. Since one standard devi-
ation is added to the target whenever moving to the next
bucket, the target value for bucketN is µX +N ·σX . When
the last one of theK buckets overflows, the rejuvenation
routine is executed. The algorithm moves to the previously
filled bucket,N−1, when the current bucketN > 0 “under-
flows”, i.e., the bucket is empty andxi ≤ µX + N · σX . In

In Proc. International Conference on Dependable Systems and Networks 2006, pages 435-444, 2006. c© IEEE 439

this version of the algorithm, the bucket depthD is constant
for all buckets and so the algorithm is said to bestatic. Ac-
tivation of the rejuvenation routine in the presence of tran-
sient degradation is prevented by the bucket depthD and
the total number of bucketsK. The minimum delay before
a degradation can be affirmed is at leastD ·K observations.
The value ofK also determines how much the distribution
of the RT must have shifted before a rejuvenation should
be carried out using the implicit assumption that a shift by
K − 1 standard deviationsσX is significant.

In the last section, we saw that one way to cope with
short-term changes in the distribution of the RT is to cal-
culate the sampling averagēxn from n individual observa-
tions. We now introduce the static rejuvenation algorithm
with averaging (SRAA), shown in Fig. 6, which tracks the
development of the sampling averagex̄n of the RT. The tar-
get values used are still of the formµX + N · σX ; this en-
sures that regardless of the sample sizen rejuvenation is
triggered as soon as the algorithm has detected evidence for
a shift of the distribution of the RTXi by K − 1 standard
deviationsσX .

The next two algorithms, however, are based on a dif-
ferent paradigm. They do not try to “verify” that the distri-
bution of the RT has shifted by a specific amount. Instead
they focus on detecting whether the distribution has moved
at all, trying to falsify the hypothesis that there has been
no right-shift. If this hypothesis can be rejected based on
the observed data, then software rejuvenation is carried out.
As a consequence of the changed paradigm, the following
algorithms employ the standard deviation of the sampling
average,σX̄n

= σX/
√

n, to determine whether the aver-
age calculated from the lastn observations deviates signif-
icantly from the expected behavior. Therefore, the target
values used are of the formµX + NσX/

√
n.

function SRAA (d, K, n, µX , σX){
u := 0; d := 0; N := 0;
while (n additional observations available){

u := u + 1;
x̄u := 1

n

∑un

t=(u−1)·n+1
xt;

if (x̄u > µX + NσX) then
{ d := d + 1; } else { d := d− 1; }

if (d > D) then
{ d := 0; N := N + 1; }

if ((d < 0) AND (N > 0)) then
{ d := D; N := N − 1; }

if ((d < 0) AND (N == 0)) then
{ d := 0; }

if (N == K) then
{ rejuvenation_routine();
d := 0; N := 0;}}}

Figure 6. Pseudo-code for the static rejuvenation al-
gorithm with averaging (SRAA)

function SARAA (d, K, norig , µX , σX){
u := 0; n := norig ; d := 0; N := 0;
while (n additional observations available){

u := u + 1;
x̄u := 1

n

∑un

t=(u−1)·n+1
xt;

if (x̄u > µX + NσX/
√

n) then
{ d := d + 1; } else { d := d− 1; }

if (d > D) then
{ d := 0; N := N + 1;
n := floor (1 + (norig − 1) · (1−N/K)); }

if ((d < 0) AND (N > 0)) then
{ d := D; N := N − 1;
n := floor (1 + (norig − 1) · (1−N/K)); }

if ((d < 0) AND (N == 0)) then
{ d := 0; }

if (N == K) then
{ rejuvenation_routine();
d := 0; N := 0; n := norig ; }}}

Figure 7. Pseudo-code for the sampling acceleration
rejuvenation algorithm with averaging (SARAA)

Our second algorithm, the sampling acceleration rejuvena-
tion algorithm with averaging (SARAA), collects a series of
n sample values of the RT and computesx̄u by taking the
average. It then uses the bucket metaphor to keep a count of
the difference between the number of times the target value
(µX + NσX/

√
n) of the current bucket has been exceeded,

and the number of times the sampled value is less than or
equal to this target value.N is again the pointer to the cur-
rent bucket,K the total number of buckets used for the algo-
rithm, andD is the depth of each bucket. When degradation
is detected, sampling is accelerated by requiring fewer sam-
ple values to trigger a transition from one bucket to the next.
The number of sample values used for a bucket is computed
when the previous bucket overflows. The computation en-
sures that when degradation is detected, fewer samples are
required to trigger a transition to the next bucket. SARAA
uses linear sampling acceleration with rate−N/K. The
floor(y) operator, which returns the largest integer less
than or equal toy , guarantees that the calculation of the cur-
rent sampling size always results in an integer value. The
algorithm is initialized withnorig, the sample size used for
the first bucket. In Section 5, we study the performance of
SARAA for norig values of 5 and 10.

The two algorithms described so far smooth short-term
deviations of the RT by using multiple buckets, the speci-
fication of a bucket depth, and by taking averages of suc-
cessive observations. Typically, the sampling sizes used for
these algorithms are too small for employing the normal ap-
proximation following from the central limit theorem, and
the two algorithms do not rely on this approximation. How-
ever, they do benefit from symmetry characteristics of the
probability density function of the sample averageX̄n of

In Proc. International Conference on Dependable Systems and Networks 2006, pages 435-444, 2006. c© IEEE 440

function CLTA (n, µX , σX , N){
u := 0;
while (n additional observations available){

u := u + 1;
x̄u := 1

n

∑un

t=(u−1)·n+1
xt;

if (x̄u > µX + NσX/
√

n) then
{ rejuvenation_routine(); }}}

Figure 8. Pseudo-code for the central limit theorem-
based rejuvenation algorithm (CLTA)

the RT. As shown in Fig. 5, even for a sample size as small
as five, the probability density function of̄Xn is much more
symmetric than that of the RT itself. Therefore, the calcu-
lation of averages does help the two algorithms in a second
way apart from the smoothing of short-term deviations: It
increases the probability of values larger thanµX and de-
creases the probability of values smaller thanµX . As a
consequence, for a larger sample size, both the SRAA and
the SARAA are able to detect right shifts of the distribution
faster.

Our third algorithm, the central limit theorem-based al-
gorithm (CLTA), directly applies the theorem. It requires a
larger sample sizen, but it only waits for one significantly
large sampling averagēxn. This means that the number of
buckets as well as the bucket depth are both implicitly set to
one. The factorN used in the calculation of the target value
µX +NσX/

√
n, which the sampling average has to exceed

in order to cause a rejuvenation, is a quantile of the stan-
dard normal distribution chosen according to the acceptable
probability of a false alarm. However, we have to take into
account our earlier finding that due to the approximation
the real error probabilities are larger than one might think.
For example, ifN is set to1.96, the97.5% quantile of the
standard normal distribution, then the false alarm probabil-
ity of decisions based on averages ofn = 30 observations
is 3.37%.

5 Empirical results

We have evaluated the three algorithms, SRAA,
SARAA, and CLTA, by running the simulation model de-
scribed in Section 3, which represents the e-commerce sys-
tem discussed in [1]. We ran each simulation for 500,000
transactions divided into five replications of 100,000 trans-
actions each. In each simulation experiment, the constant
values ofµX = σX = 5 were used. For anM/M/16
queuing system with a service rate ofµ = 0.2 trans-
actions/second and an arrival rate of up to1.6 transac-
tions/second, the mean and the standard deviation of the
RT distribution are close to these values, as was seen in
Section 4.1. Average RT and fractions of transactions lost

are shown as functions of the offered load (λ
µ) expressed in

terms of the number of CPUs. In each figure we kept the
value of the product of sample size,n, number of buckets,
K, and bucket depth,D, constant. Throughout the paper,
we refer to this product asn ·K ·D.

In each experiment described below, our goal is to eval-
uate the individual impact of each parameter on the algo-
rithm performance as assessed in terms of average RT at
high loads and the amount of transaction loss at low loads.

5.1 SRAA,n ·K ·D = 15

Fig. 9 presents RT results for SRAA, withn · K · D =
15. For this evaluation, we performed experiments setting
(n,K, D) = (1, 3, 5), (1, 5, 3), (3, 1, 5), (3, 5, 1), (5, 1, 3),
(5, 3, 1), (15, 1, 1). We see a clear dichotomy of RTs
in Fig. 9 with (n,K, D) = (5, 1, 3), (3, 1, 5), (15, 1, 1)
providing better average RTs than(n,K, D) = (5, 3, 1),
(1, 5, 3), (1, 3, 5). However, when we examine Fig. 10,
we see that the improvement in performance achieved by
(n,K, D) = (5, 1, 3), (3, 1, 5), (15, 1, 1) is obtained at the
cost of a larger fraction of transaction loss at low loads.
Therefore, we conclude that forn ·K ·D = 15, when only
one bucket is used (K = 1) we observe better RTs over
the entire range than for any other value ofK, but incur
a higher average transaction loss at low loads, and a lower
average transaction loss at high loads. This is an interest-
ing observation since the introduction of multiple buckets
in SRAA was intended to distinguish between performance
degradation that occurs as a result of bursts of arrivals, and
degradation that occurs as a result of software aging. Here
we observe that when several buckets were used, SRAA tol-
erates bursts of arrivals at low loads with negligible trans-
action loss as expected. However, this comes at the cost of
a considerably higher transaction loss at high loads.

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

Offered Load (CPUs)

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(n=1, K=3, D=5)
(n=1, K=5, D=3)
(n=3, K=1, D=5)
(n=3, K=5, D=1)

(n=5, K=1, D=3)
(n=5, K=3, D=1)
(n=15, K=1, D=1)

Figure 9. Response time results, SRAA, n ·K ·
D = 15

In Proc. International Conference on Dependable Systems and Networks 2006, pages 435-444, 2006. c© IEEE 441

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9 10

Offered Load (CPUs)

A
ve

ra
g

e
F

ra
ct

io
n

 o
f

T
ra

n
sa

ct
io

n
 L

o
ss

(n=1, K=3, D=5)
(n=1, K=5, D=3)
(n=3, K=1, D=5)
(n=3, K=5, D=1)

(n=5, K=1, D=3)
(n=5, K=3, D=1)
(n=15, K=1, D=1)

Figure 10. Fraction of transaction loss re-
sults, SRAA, n ·K ·D = 15

Our next experiments are designed to investigate the impact
of doubling the value of each parameter on the performance
of the SRAA algorithm. In Sections 5.2, 5.3, and 5.4, we
evaluate the performance of SRAA for parameters gener-
ated by doubling the sample size, the bucket depth and the
number of buckets, while keepingn ·K ·D = 30.

5.2 SRAA, sample size doubled

Fig. 11 presents RT results for SRAA, withn·K ·D = 30.
We set(n,K, D) = (2, 3, 5), (2, 5, 3), (6, 1, 5), (6, 5, 1),
(10, 1, 3), (10, 3, 1), (30, 1, 1), by doubling the sample size
component of the experiment settings from Section 5.1. The
goal of this experiment is to assess the impact of the sample
size parameter on the algorithm performance. We notice
from Fig. 11 that doubling the values of sample size has
a negative impact on the RT. For example, for a load of 9.0
CPUs and(n,K, D) = (15, 1, 1), the average RT for SRAA
is 6.2 seconds, while for(n,K, D) = (30, 1, 1), the average
RT for SRAA is 9.9 seconds.

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10

Offered Load (CPUs)

A
ve

ra
g

e
 R

es
p

o
n

se
 T

im
e

(n=2,K=3,D=5)
(n=2, K=5, D=3)
(n=6, K=1, D=5)
(n=6, K=5, D=1)

(n=10, K=1, D=3)
(n=10, K=3, D=1)
(n=30, K=1, D=1)

Figure 11. Response time results, SRAA, n ·
K ·D = 30, impact of sample size doubling

For the same load of 9.0 CPUS, for(n, K,D) =
(3, 5, 1), the average RT for SRAA is 10.45 seconds, while
for (n,K, D) = (6, 5, 1), the average RT for SRAA is 14.3
seconds. Note that the observed RTs are longer because the
larger sample size means that rejuvenation is triggered later,
as it takes longer to collect a larger sample.

5.3 SRAA, bucket depth doubled

Fig. 12 presents RT results for SRAA withn · K · D =
30. We consider(n,K, D) = (1, 3, 10), (1, 5, 6), (3, 1, 10),
(3, 5, 2), (5, 1, 6), (5, 3, 2), (15, 1, 2), doubling the bucket
depth component of the experiment settings in Section 5.1
to assess the impact on the RT.

Comparing Fig. 12 and 11, we see that doubling the
bucket depth has a less severe impact on performance than
doubling the sample size.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

Offered Load (CPUs)

A
ve

ra
g

e
 R

es
p

o
n

se
 T

im
e

(n=1,K=3,D=10)
(n=1, K=5, D=6)
(n=3, K=1, D=10)
(n=3, K=5, D=2)

(n=5, K=1, D=6)
(n=5, K=3, D=2)
(n=15, K=1, D=2)

Figure 12. Response time results, SRAA, n·K ·
D = 30, impact of bucket depth size doubling

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

Offered Load (CPUs)

A
ve

ra
g

e
F

ra
ct

io
n

 o
f

T
ra

n
sa

ct
io

n
 L

o
ss

(n=1,K=3,D=10)
(n=1, K=5, D=6)
(n=3, K=1, D=10)
(n=3, K=5, D=2)

(n=5, K=1, D=6)
(n=5, K=3, D=2)
(n=15, K=1, D=2)

Figure 13. Fraction of transaction loss re-
sults, SRAA, n ·K · D = 30, impact of bucket
depth size doubling

In Proc. International Conference on Dependable Systems and Networks 2006, pages 435-444, 2006. c© IEEE 442

However, doubling of the bucket depth does decrease the
average fraction of transaction loss as can be seen from
Fig. 13 for the configurations with more than one bucket.
Specifically, for(n, K,D) = (1, 3, 10), (1, 5, 6), (5, 3, 2),
the fraction of transaction loss for CPU loads of 0.5 CPUs is
negligible. However, for(n,K, D) = (3, 1, 10), (5, 1, 6),
(15, 1, 2), we do observe measurable fractions of transac-
tion loss for a low load of 0.5 CPUs.

5.4 SRAA, number of buckets doubled

Fig. 14 presents RT results SRAA, withn · K · D =
30. For this evaluation we executed experiments with val-
ues the(n,K, D) = (1, 6, 5), (1, 10, 3), (3, 2, 5), (3, 10, 1),
(5, 6, 1), (15, 2, 1), (15, 1, 2), by doubling the number of
buckets component of the experiment settings from sec-
tion 5.1. The objective of these experiments are to assess
the impact of the number of buckets parameter on the al-
gorithm performance. We notice from Fig. 14 that dou-
bling the number of buckets has a negative impact on perfor-
mance. For example for the load of 9.0 CPUs and the value
of (n,K, D) = (15, 1, 1) the average RT for SRAA is 6.2
seconds, while for the value of(n,K, D) = (15, 2, 1) the
average RT for SRAA is 11.05 seconds. For the same CPU
load of 9.0 CPUS, for the value of(n,K,D) = (3, 5, 1)
the average RT for SRAA is 10.45 seconds, while for the
value of(n,K, D) = (3, 10, 1) the average RT for SRAA
is 14.9 seconds. However, doubling the number of buck-
ets generates the best tradeoff configuration for low trans-
action loss at low loads and reasonable RT at high loads.
For example, for configuration(n, K,D) = (3, 2, 5), the
average fraction of transaction loss for a 0.5 CPUs load is
0.000026 while the average RT for a 9.0 CPUs load is 10.3
seconds. In addition, the second best tradeoff is the con-
figuration of (n,K,D) = (5, 2, 3) for which the average
fraction of transaction loss for 0.5 CPUs is 0.0003 while the
average RT for 9.0 CPUs is 10.4 seconds.

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

Offered Load (CPUs)

A
ve

ra
g

e
 R

es
p

o
n

se
 T

im
e

(n=1,K=6,D=5)
(n=1, K=10, D=3)
(n=3, K=2, D=5)
(n=3, K=10, D=1)

(n=5, K=6, D=1)
(n=15, K=2, D=1)
(n=15, K=1, D=2)

Figure 14. Response time results, SRAA, n·K ·
D = 30, impact of number of buckets doubling

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

Offered Load (CPUs)

A
ve

ra
g

e
 R

es
p

o
n

se
 T

im
e

(n=2,K=3,D=5)

(n=2, K=5, D=3)

(n=6, K=5, D=1)

(n=10, K=3, D=1)

Figure 15. Response time results, SARAA, n ·
K ·D = 30

Therefore, we conclude that an adequate combination of
bucket depth and number of buckets is required to deliver
good performance at low loads.

5.5 SARAA

Fig. 15 presents RT results for SARAA, withn ·K · D
= 30. We consider(n,K, D) = (2, 3, 5), (2, 5, 3), (6, 5, 1),
(10, 3, 1). Fig. 15 shows that SARAA offers improvement
over SRAA in RTs at high loads, while maintaining the neg-
ligible average transaction loss characteristics at low loads.
For example for 9.0 CPUs and(n,K, D) = (2, 5, 3), the
SRAA RT is measured as 11.94 seconds while the SARAA
RT is measured as 10.5 seconds. For(n,K,D) = (2, 3, 5),
SRAA RT is 11.05 seconds while SARAA is 9.8 seconds.
For (n,K, D) = (6, 5, 1), the for SRAA is 14.3 seconds
while the for SARAA is 11 seconds.

5.6 Comparing SRAA, SARAA, and CLTA

Fig. 16 compares results for SRAA, SARAA, and CLTA.
We use CLTA with(n, K,D) = (30, 1, 1) andN = 1.96,
and SRAA and SARAA with(n,K, D) = (2, 5, 3). The
objective of this experiment is to compare the performance
of the three algorithms whilen · K · D = 30. The intent
of CLTA was to use a sample size which is large enough
for employing the normal approximation following from the
central limit theorem. The value ofN is the quantile of the
normal distribution selected based on the acceptable rate
of false alarms. Therefore, comparing the performance of
CLTA with (n,K, D) = (30, 1, 1) and SRAA and SARAA
with (n,K, D) = (2, 5, 3) helps clarify the domain of ap-
plicability of each algorithm. Recalling that our basis for
assessment is the average at high loads and the amount of
transaction loss at low loads, we see from Fig. 16 that CLTA
with (n, K,D) = (30, 1, 1) leads to performance degrada-
tion at both low and high loads as compared to SRAA and
SARAA with the settings(n,K, D) = (2, 5, 3).

In Proc. International Conference on Dependable Systems and Networks 2006, pages 435-444, 2006. c© IEEE 443

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

Offered Load (CPUs)

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

CLTA (n=30,K=1,D=1)

SRAA (n=2, K=5, D=3)

SARAA (n=2, K=5, D=3)

Figure 16. Response time results comparing
SRAA, SARAA, CLTA algorithms, n ·K ·D = 30

For example, for 0.5 CPUs, SRAA and SARAA drop a neg-
ligible fraction of transactions while CLTA drops 0.001406,
while for 9.0 CPUs, the average is 10.5 seconds for SARAA
and 11.94 seconds for SRAA, and 12.8 seconds for CLTA.

6 Conclusions
We have introduced three new software rejuvenation al-

gorithms. We performed empirical studies applying the al-
gorithms to a large e-commerce system for which we had
observed significant performance degradation in the field.
We used a simulation model of this system to assess the
performance of the three algorithms and to study the per-
formance sensitivity to variations on three important al-
gorithm parameters: sample size, number of buckets, and
bucket depth. We conclude that optimal performance can
be achieved by using the sample size to determine precision
of the RT estimation, number of buckets to determine tol-
erance to burst of arrivals, and bucket depth to accurately
detect performance degradation. As a result, configurations
that use small values of each of the parameter are better than
configurations that invest in only one dimension. For exam-
ple (n,K, D) = (2, 5, 3) yielded better performance than
(n,K, D) = (30, 1, 1). Increasing the number of buck-
ets produced large RTs. Very small numbers of buckets
produced measurable rates of transaction loss at low loads.
Therefore, the three new algorithms presented are able to
control performance by determining appropriate times to
perform software rejuvenation. However, care needs to be
taken to optimize each algorithm and parameter configura-
tion to the domain of applicability, since for each param-
eter configuration, a significant range of performance was
detected. We have found that adaptive techniques, as em-
ployed by SARAA, can provide performance improvement
by dynamically matching each algorithm performance to
the real-time field conditions. Therefore, we plan to con-
sider statistical estimation techniques to determine optimal
algorithm parameters in real-time.

References
[1] A. Avritzer, A. Bondi, and E. J. Weyuker, “Ensuring

stable performance for systems that degrade,” inProc.
Fifth International Workshop on Software and Perfor-
mance, 2005, pp. 43–51.

[2] ——, “Ensuring system performance for cluster and
single server systems,”Journal of Systems and Soft-
ware, 2006. (To appear).

[3] A. Avritzer and E. J. Weyuker, “Monitoring smoothly
degrading systems for increased dependability,”Em-
pirical Software Engineering, vol. 2, no. 1, pp. 59–77,
1997.

[4] ——, “The role of modeling in the performance test-
ing of e-commerce application,”IEEE Trans. Software
Engineering, vol. 30, no. 12, pp. 1072–1083, 2004.

[5] A. Bobbio, A. Sereno, and C. Anglano, “Fine grained
software degradation models for optimal rejuvenation
policies,” Performance Evaluation, vol. 46, no. 1, pp.
45–62, 2001.

[6] V. Castelli, R. E. Harper, P. Heidelberger, S. W.
Hunter, K. S. Trivedi, K. Vaidyanathan, and W. P. Zeg-
gert, “Proactive management of software aging,”IBM
Journal of Research and Development, vol. 45, no. 2,
pp. 311–332, 2001.

[7] D. Gross and C. M. Harris,Fundamentals of Queueing
Theory, 3rd ed. New York: John Wiley & Sons, 1998.

[8] M. Grottke and K. S. Trivedi, “Software faults, soft-
ware aging and software rejuvenation,”Journal of the
Reliability Engineering Association of Japan, vol. 27,
no. 7, pp. 425–438, 2005.

[9] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton,
“Software rejuvenation: Analysis, module and appli-
cations,” inProc. Twenty-fifth International Symp. on
Fault-Tolerant Computing, 1995, pp. 381–390.

[10] M. F. Neuts,Matrix-Geometric Solutions in Stochastic
Models : An Algorithmic Approach, Baltimore: The
Johns Hopkins University Press, 1981.

[11] R. Rajamony and M. Elnozahy, “Measuring client-
perceived response times on the WWW,” inProc.
Third USENIX Symp. on Internet Technologies and
Systems, 2001.

[12] R. A. Sahner, K. S. Trivedi, and A. Puliafito,Per-
formance and Reliability Analysis of Computer Sys-
tems: An Example-based Approach Using SHARPE.
Boston: Kluwer Academic Publishers, 1996.

[13] R. H. Shumway and D. S. Stoffer,Time Series Analy-
sis and Its Applications. New York: Springer, 2000.

[14] K. S. Trivedi, Probability and Statistics with Relia-
bility, Queuing, and Computer Science Applications,
2nd ed. New York: John Wiley & Sons, 2001.

[15] K. S. Trivedi, K. Vaidyanathan, and K. Goševa-
Popstojanova, “Modeling and analysis of software ag-
ing and rejuvenation,” inIEEE Annual Simulation
Symposium, 2000, pp. 270–279.

In Proc. International Conference on Dependable Systems and Networks 2006, pages 435-444, 2006. c© IEEE 444

