Prediction of Software Failures Based on Systematic Testing*

Michael Grottke Klaudia Dussa-Zieger
Chair of Statistics and Econometrics imbus AG
University of Erlangen-Nuremberg Kleinseebacher Str. 9
Lange Gasse 20 D-91096 Moehrendorf
D-90403 Nuernberg Germany
Germany

Contact: Michael.Grottke@wiso.uni-erlangen.de

Abstract

Software can be tested in several ways: either according to the operational profile of the user, or by
following a systematic testing approach. If the latter is chosen, then it becomes difficult to estimate the
number of failures in the software, or its reliability. In this paper, we present a software reliability model,
the Rivers-Vouk model, which specifically addresses the issues of systematic testing. Using an intuitive
model framework its assumptions are compared to those of a model designed for operational testing. The
Rivers-Vouk model has been applied to a test project at imbus AG and the results of the failure prediction
are discussed. In the conclusion the PETS project is briefly reviewed whose aim it is to incorporate data
on the software process maturity into software reliability models.

1 Software testing and failure models

No piece of software, independent of its size and complexity, is free of faults. As software is written by humans,
errors will always occur. Due to a wrong or incomplete specification, large problem complexity, lack of time,
etc. mistakes are made, and when this happens whilst developing software this is known as an error. The result
of a human error being made is a software fault!, i.e. an incorrect piece of software. When the faulty software
is executed, it can exhibit an unexpected behavior, produce an incorrect result. This is known as a failure.
Software failures are a serious matter. In a growing and increasingly networked information society, in which
the computer has conquered almost every aspect of our lives, a software failure may result in an threat to life
or assets. In the Therac-25 accident, for example, several patients lost their lives due to a radiation overdose.
Statistics on software failures published in literature clearly document the risks [16].

In this situation it is of vital interest that we thoroughly test critical software and are able to predict the
number of failures experienced in the remaining test time or the number of faults in the software after release.
With this goal in mind numerous statistical models have been developed. The basic approach is to model past
failure data to predict future behavior. These models are typically based on failure data such as the number
of failures experienced in specified time intervals, or the time elapsed between two consecutive failures.

Reflecting the definition of a failure, it becomes clear that the occurrence of a failure depends on the
characteristics of the software and on the way in which the software is used. One possible way to test software
is according to the typical behavior of the user, which is also called the operational profile. Testing according
to the operational profile means that the operations of the system under test have to be determined together
with their execution probabilities. Based on these probabilities the number of test cases is allocated to the
different program functions. The test cases should then be executed in a random order, i.e. different parts
of the software should not be tested in strict succession. Operational testing? has two advantages. Since the
operations that will be used frequently by the users are tested more thoroughly, more failures will occur in these
parts of the software during testing and consequently these parts will be more stable afterwards (assuming a

*This work was supported by the European Community in the framework of the specific programme for research, technological
development and demonstration on a user friendly society (1998-2002), the “IST Programme”, Contract No. IST-1999-55017.
The authors are solely responsible for this paper. It does not represent the opinion of the Community, and the Community is not
responsible for any use that might be made of data appearing herein.

This article was published in: Electronic Proc. Ninth European Conference on Software Testing Analysis and Review (EuroSTAR),
Stockholm, 2001

perfect removal of the faults) [9]. If the usage during testing does not differ from usage after release of the
software, then the failure behavior is close to the one the user would also have experienced. Based on the
failure data the reliability, i.e. the probability of a failure-free operation of the software for a specified interval
of time, can be calculated [2].

In the vast majority of industrial organizations testing is done in a systematic manner [3]. Based on the
functional specification of the application under test or its program code, the test cases are developed. The
tester pays attention to all aspects of the software. Given the specific area of application the complete test
of all software requirements may even be mandatory due to legal requirements, e.g. FDA asks for a complete
requirements tracing for medical software. Following this testing strategy the goal is to provoke as many failures
as possible, to correct the underlying faults and thereby increase the software reliability. However, it is not
possible to assess the reliability based on the collected failure data since the aspect of operational testing is
neglected. It is considered more important to test the entire functionality of the application.

To execute tests in a systematic and efficient manner, test cases are often specified following black box design
techniques. Black box testing views the application under test as a black box, i.e. the program code is hidden
and only the functional specification of the application, the expected behavior at the interface to the user, is
known. Classical black box techniques are equivalence partitioning and boundary value analysis [10, 16]. Using
equivalence partition testing the possible values for input and output parameters of the application are divided
into non-overlapping classes in such a way that the behavior of the software is assumed to be the same for all
members of one class. Only one representative of each class has to be tested. In most cases the partitions are
derived from the functional specification of the software. Test designers may also make use of their knowledge
about typical errors of programmers and of their intuition for creating the partitions. Boundary value analysis
identifies the boundaries between equivalence classes and treats them as additional partitions. Experience has
shown that the boundary values tend to be error-prone, and therefore additional test cases are designed.

Besides the black box techniques also white box techniques can be applied for the derivation of test cases
[16]. Here the internals of the application, i.e. the program code, are given, whereas the functional specification
is not regarded. In white box testing a criterion referring to code constructs (e.g. lines or branches) is defined
for test case derivation. Based on the chosen criterion the test cases are generated with the intention to cover
as many constructs of the code as possible. Occasionally black box testing and white box testing are combined.
Here, a base set of black box tests is defined. While they are executed, their structural coverage is measured.
Afterwards additional tests are defined based on the knowledge of the program code to further enhance the
coverage.

To increase the speed of test case execution, test cases are often ordered in a clever way such that pre-
conditions for the following test case are established by the prior test. Thus, the effort to set up specific test
conditions and navigate through the application is minimized.

Testing in a systematic manner has several advantages. Systematic testing avoids redundancies in the test
cases. Navigation through the application is minimized. Critical, but rarely used functions are tested since the
complete functionality of the application is tested. It allows to start with testing when no operational profile
is available or can be determined, e.g. for new applications where no historical data is available. Looking
at the characteristics of operational testing and systematic testing, it is obvious that both approaches differ
substantially.

Classical software reliability models assume that the failure data was collected during testing following
the operational profile. Another assumption of these models is that the faults are corrected instantaneously
and perfectly. As a consequence the mean value function p, which represents the expected number of failures
experienced, has a decreasing slope starting from a certain point of usage. The reliability as it is experienced by
the user increases. Therefore, the models are called software reliability growth models. Per se these models are
not appropriate to model the failure behavior during systematic testing. Further analysis and interpretation
of the model properties is necessary to adapt them to different testing situations.

2 Derivation and discussion of the Rivers-Vouk model

As shown by Grottke [7], several finite failure category models fit into a common framework. According to this
framework, the functional form of the number of failures experienced in calendar time is determined by the
following relationships:

1. The allocation of testing effort, i.e. time spent on executing the application under test, to calendar time

2. The development of the number of test cases executed as a function of cumulative testing effort

3. The coverage of code constructs attained through test case execution
4. The relationship between structural coverage and the number of failures experienced

Not all relationships have to be included in a model. Indeed, most software reliability growth models start out
with a measure of testing effort (like CPU time used by the application under test, the so-called execution time),
not with calendar time. Moreover, many models directly express the development of the cumulative number of
failure occurrences as a function of testing effort and do not explicitly specify the intermediate relationships.
However, these relationships may help to derive and in this way explain the overall functional form of different
software reliability growth models.

How structural coverage changes with the execution of additional test cases will depend on the number of
code constructs sensitized by the test cases, and on the extent of redundancy in selecting these constructs.

A possible setup is the one of operational testing with a homogenous operational profile, in which all non-
overlapping and equally-sized operations have the same occurrence probability: Per test case, p of the G code
constructs a piece of software consists of are exercised on average. The p constructs are always sampled from
the entire population, i.e. constructs may be tested over and over again. Piwowarski et al. [12] have shown
that these assumptions lead to an exponential form of the expected structural coverage, C, as a function of the
number of test cases executed, i:

E(C()) =1 — exp (—%i) 1)

The continuous approximation of this relationship is depicted by the solid line in figure 1 for % = 0.002.
Obviously, even though the number of constructs exercised per test case stays constant, the number of the ones
sensitized for the first time decreases due to the redundant execution of constructs already tested before.

06 08§ 1.0
|

(Expected) Structural coverage
04

T T T T T T T T T
] 200 400 500 800 1000 1200 1400 1600

Mumber of test cases executed

Figure 1: (Expected) Structural coverage attained with replacement (—) or elimination (--) of all tested
constructs, with & = 0.002

If we are interested in the formulation of the number of failures experienced in terms of testing effort, then
we also have to specify the relationship between testing effort and the number of test cases executed and the
development of the number of failure occurrences in dependence of structural coverage. Under the assumption
that for each test case the same amount of testing effort ¢; is necessary, the number of executed test cases is
proportional to the testing effort spent. Likewise, the second relationship is that of proportionality if the N
faults expected to be located in the software code at the beginning of testing® are uniformly distributed over

the G constructs, if a fault causes a failure the first time the construct in which the fault is located is sensitized,
and if each fault is removed instantaneously and perfectly as soon as it has caused a failure.

With these suppositions, the shape of the mean value function in terms of testing effort ¢ is an exponential
one, like for structural coverage in dependence of the number of test cases:

) = Bu(0) = N 1= exp (- 7| 2)

This is the form of the widely-used model by Goel and Okumoto [5]. As our derivation shows, its ever-decreasing
slope (cf. figure 2) - i.e., the testers’ declining effectiveness in detecting faults by “producing” software failures -
can be explained by the inefficient sampling in the framework of operational testing.

200 3no 400 500
| | | |

Expected number of failure occurrences

100
|

T T T T T T
0 200 400 500 800 1000

Testing effort in hours

Figure 2: Mean value function of the Goel-Okumoto model with N =520 and %tt = 0.005

Practical application of the model has often shown that it is too optimistic: Since the parameter N stands
for the total number of faults in the software at the beginning of testing, and since each fault is assumedly
corrected as soon as it has caused a failure, the estimated value N calculated at some point during testing is
also an estimate for the maximum total number of failure occurrences until the end of testing. However, the
cumulative number of failures experienced often exceeds this estimate after some additional testing [1, p. 15].
Our discussion suggests that this behavior may be due to a disparity between model assumptions and the
real world: Testers actually do not sample the code constructs with perfect replacement, because they try to
reduce at least some redundancy in testing. Therefore, the decrease in the slope of the structural coverage
function (and of the mean value function as well) is not as large as presumed by the Goel-Okumoto model. As
a consequence, the estimated number of failures to be experienced until the end of testing is too small.

It can be expected that software reliability growth models based on the perfect-replacement-of-constructs
assumption are especially inappropriate for analysis of failure data collected during systematic testing. A
model designed for this testing strategy has to specify a different relationship between the number of test cases
executed and structural coverage attained.

One of the few models for systematic testing was developed by Rivers and Vouk [13, 15], building on earlier
work [14, 17]. They consider test data which is grouped in non-overlapping stages of testing. For each stage j,
which consists of one or more test cases, the number of test cases executed (Ai;) or code constructs exercised
(Ag;) at this stage has to be available in addition to the number of failure occurrences (Am;). A central
assumption of their model is that code constructs which have already been tested are not tested a second time.
Since Rivers and Vouk equivalently use code coverage metrics and the number of test cases executed as input

values of their model, they obviously suppose proportionality: the coverage achieved by the execution of k test
cases is k times the coverage attained by one test case. This means that the test cases are equally-sized with
respect to the number of code constructs sensitized per test case. For example, if a software code consists of
G = 4000 constructs, 8 of which are newly exercised by each test case, then per test case 0.2 per cent additional
structural coverage is attained; after 500 test cases all constructs have been covered. The dotted line in figure 1
depicts this relationship and can be compared to the result of the operational testing setup.

Most of the few models explicitly specifying how the number of failures experienced develops in dependence
of structural coverage - like the coverage model by Piwowarski et al. [12] discussed above or the Enhanced
Non-homogeneous Poisson Process framework by Gokhale et al. [6] - presume proportionality. However, this
assumption seems to neglect important aspects: First of all, even when all G constructs of a software code
have been tested not all faults have necessarily caused a failure. There are faults which are not detectable
under a given testing strategy. Therefore, good testing does not only increase structural coverage, but also
does it “the right way”, i.e. by covering constructs that are thought to be error-prone. Furthermore, more
than one construct may lead to the detection of the same fault. This increases the visibility of such faults and
the ease with which they can be detected. If faults with high activation probabilities tend to be found earlier,
as might be expected, the average visibility of the faults will decrease as testing proceeds, because especially
hard-to-detect faults remain in the software. On the other hand, the growing experience of testers may increase
their insight into where faults are hidden and into their ability to run test cases which activate these faults.

To account for such phenomena, Rivers and Vouk introduce a factor g;, which relates the number of faults
remaining in the software at the beginning of the j* stage of testing to the number of constructs whose
execution causes a failure: If the number of failures experienced and faults corrected during the first (j — 1)
stages is m;_1, then the number of faults visible at the jt" stage is therefore gj (N —m;_1). Since it is also
related to the testers’ performance, Rivers and Vouk refer to g; as the “testing efficiency”. The probability of
experiencing Am,; failures by testing Ag; constructs at this stage is then the number of ways in which exactly
Am; constructs can be chosen out of the g; [N — m;_] faulty ones divided by all possible combinations of
sampling Ag; constructs out of the G — ¢;_1 constructs which have not been exercised (and removed) before.
This line of thoughts leads to the following hypergeometric probability function:

gj(NA—mTj—l)) ([G—qj‘—lA]q; [_gaéfxl]f mj_1)])

; (3)
(“as)
qu
for Am; taking integer values smaller than or equal to Ag;.*
From this probability function, the number of failures we expect to experience at the j** stage if we know
that m;_; failures have occurred before that stage, can be derived by applying a simple rule [11, p. 177]:

P(AM] = Amj | mj_l) = (

Ag; Ac;
E(AM; | mj_1) = g;(N —mj_1) 7—— = g;(N —mj_1)—"—. (4)
G- qj—1 1-— Cj—1
Acj = % is the structural coverage gained at stage j, and c;_; = q’él is the coverage at the beginning of

that stage.

With equation (4) we can only calculate the expected number of failures at a certain stage if all earlier
stages have already taken place. If we want to make long-term predictions, we have to use an expression which
does not depend on this knowledge, namely the unconditional expected value of AM;:

ACJ‘

E(AMj) = gj[N - E(Mjﬂ)]ﬁ-

()

In equation (5), the actual number of failure occurrences up to the (j — 1)** stage, m;_1, has been replaced
by its expected value, E(M;_;). This equation can be used as a starting-point for deriving the mean value
function p(c), i.e. the expected cumulative number of failures experienced when 100 - ¢ % coverage has been
achieved. For this end we have to conceptualize infinitely small stages which lead to an increase in coverage of
almost zero. Consequently, the number of failure occurrences after the j* stage may be very close to the one
after the (j — 1)"" stage, and equation (5) can be continuously approximated by

de

dp(c) = g()[N — ple)ly—

(6)

where dc and du indicate the infinitely small increases in structural coverage and in the expected number of
failures, respectively. The mean value function is then [13, pp. 38 - 39]

1-¢

Cmin

b0 = N = (8 = i) e | = [) (7)

Cmin and i,y denote the minimum meaningful coverage and the expected number of failures observed for this
coverage. They are solely introduced for stabilization purposes and do not change the shape of the mean value
function, but move its origin in a cartesian coordinate system from (0, 0) to the point (¢pmin, tmin)-

However, the shape of the mean value function depends on what form the testing efficiency (TE) takes.
Rivers considers three different cases [13, pp. 40 - 42]:

1. Assuming a constant testing efficiency, i.e. setting g(¢) = a with a > 0, yields

) = N = (= i) (1) (®)

1- Cmin

A property of this model is that at full coverage (¢ = 1) all N faults in the software code are expected
to have caused failures. For g(¢) = o = 1, when each fault is visible through exactly one construct,
the number of failures experienced is proportional to coverage, and the software reliability growth model
is a straight line. For g(¢) = « > 1, the faults are highly visible and therefore will be detected early.
This means that the model starts out with a high slope which continuously decreases, because less faults
remain in the software at higher coverage levels. Just the opposite holds true for 0 < o < 1. This
behavior in connection with a constant testing efficiency is clearly counterintuitive.

2. Using the linear testing efficiency g(c¢) = a(1 — ¢), which decreases from « > 0 at the beginning of testing
to zero at full coverage, results in

p(e) = N — (N — fimin) exp (—a(c — cmin)) - 9)

Note that the shape of this function is exactly the one of the Goel-Okumoto model (cf. equation (2)).
However, its interpretation differs from the one by Piwowarski et al. described at the beginning of this
section. While in their derivation inefficient sampling of code constructs leads to the exponential form of
coverage growth, here coverage develops proportionally to the number of test cases, and the decreasing
efficiency in detecting faults is the reason for the shape of the overall function. Therefore, we see that
the Goel-Okumoto model is not necessarily connected to operational testing. However, it always assumes
inefficiency in one of the relationships.

Another important difference is that the independent variable in equation (9), coverage ¢, can only take
values between zero and one, unlike testing effort in equation (2), which at least conceptually can reach
infinity. Since exp (—a(1 — ¢min)) is always larger than zero (as long as « is not extremely large and ¢
is not equal to one, which both would lead to a useless model anyway), according to the model a number
of faults will never be detected.

3. If the testing efficiency is assumed to take the form g(c) = ayc¢?~(1—c¢) with a > 0 and v > 0, which is a
generalization of the linear testing efficiency function, then the following mean value function is obtained:

p(e) = N = (N = pimin) exp (—a(c” = ¢i)) - (10)

This equation corresponds to the mean value function of a software reliability model referred to as the
“Goel generalized nonhomogeneous Poisson process model” [4], the “generalized Goel-Okumoto model”
[6] or the “Weibull model” [2] in literature.

For v > 1, the testing efficiency increases in the early stages of testing until it reaches a maximum
value and then decreases to zero. Therefore, this model is referred to as the unimodal TE model. Due
to the increasing/decreasing efficiency in detecting those code constructs where faults are located, the
mean value function is S-shaped. The linear TE model is obtained for v = 1. In this case as well as for
0 < v < 1 the testing efficiency is strictly decreasing.

Like in the linear TE model, several of the IV faults in the software code will not have been detected even
when full coverage will be attained.

For a real data set of coverage levels and the respective cumulative numbers of failure occurrences, the parameter
values of (8) to (10) - N, a and 8 - can be estimated by searching for those values that minimize the sum of
squared errors (SSE) of the fitted model.

Due to the implicitly assumed proportionality between the number of test cases executed and structural
coverage ¢, the three forms of the Rivers-Vouk model can also be expressed in terms of test case coverage b,
the number of test cases executed divided by the total number of test cases planned, by substituting b for c.
If the number of failure occurrences is not only known for sets of test cases but individually per test case, the
minimum meaningful test case coverage b,,;, and - consequently - i, should be set to zero.

Rivers argues that a non-increasing testing efficiency being appropriate for modelling the number of failure
occurrences indicates a lack of learning within the testing project. Testers are not able to or not allowed to
run test cases departing from the test specification and therefore cannot use the experience made to improve
their effectiveness [13].

Two remarks to this assertion seem to be necessary:

1. We should not forget that the so-called “testing efficiency” g(c) is by no means the only aspect concerning
the testers’ performance. Its influence is restricted to the relationship between structural coverage and
the number of failures experienced. However, metrics of effectiveness and efficiency can also be defined
for the second and third relationship listed at the beginning of this section (while the first one is more a
matter of allocation of resources). For example, the average time needed per test case execution depends
on whether the test cases have been ordered in some convenient way minimizing navigation between
different parts of the application under test. Moreover, as the testers gain experience in using the tested
software, they will probably be able to execute more test cases in a certain amount of time. Therefore, the
term “testing efficiency” sounds more comprehensive than the scope of g(c¢) in fact is. Judgements about
whether any learning takes place during the testing process cannot be solely based on the functional form

of g(c).

2. As for the structural coverage attained through test case execution, the Rivers-Vouk model implicitly
supposes proportionality, which is a strong assumption. In reality, perfect efficiency in sampling code
constructs will hardly be achieved, especially if test cases are specified using a black box approach. If a
model assuming a constant testing efficiency in addition to non-redundant sensitization of code constructs
is appropriate for modelling the collected failure data, this seems to indicate a good overall quality of the
test specification.

3 Application of the model

The three different forms of the Rivers-Vouk model have been used for the analysis of a testing project at
imbus. The application under test was the first release of a large customized software for a public authority.

How to provide for the necessary data was a first issue. For several years, during each project information
about the failures themselves, like a detailed description, the day of occurrence and the severity had already
been collected in a database. However, a measure of testing effort, or a record unambiguously stating the test
case whose execution lead to the failure were not ready at hand. Therefore, to gather the data appropriately,
additional effort had to be invested. ProDok, a home-grown test plan management tool of imbus, was augmented
with functions for logging the time intervals in which a test case is executed, and the failure occurrences. This
new part of ProDok is called Teddi (test data determination and interpretation tool). From the raw data
collected, for each test case the time spent on it and the number of failures experienced can be calculated
among other metrics.

The determination of the order in which the test cases are executed poses another practical problem, because
the test cases are often not tested in strict succession. For example, at the end of a test cycle, a tester might
come back to a test case almost entirely executed before and spend some few additional minutes on it. Since
the test cases are atomic units, considering the test case finished at this later point has the consequence of
counting all failures that occurred for the test case as if they were experienced at the end of the test cycle. A
pragmatic solution has been implemented: To each testing interval collected for a test case a factor between
zero and one is assigned according to its share at the total testing effort spent on this test case. The weighted
sum of the end points of the intervals then yields the “average time of completion” of the test case. In the
analysis, the test cases are chronologically ordered according to these values.

As for the project under consideration, after about 76 per cent of the planned test cases had been executed,
190 failures caused by different faults had been reported by the testers. Figure 3 shows M (), the number of

failure occurrences as a function of the fraction of test cases executed.

200

150
I

MNumber of failure occurrences
100
|

T T T
0o 0z 04 06 0s

Test case coverage

Figure 3: Test case coverage and number of failures experienced

While the number of failure experienced per test case is moderate in most cases, some jumps in the diagram
caused by test case executions resulting in a large number of failure occurrences are clearly visible, for example
at about 25 per cent of test case coverage. A reason for this might simply be that highly defective code was
tested by these test cases. However, it can also hint at extensive test cases sensitizing much more constructs
than the average test case does. Rather than a high fault density of the code, the sheer testing effort spent
would then be responsible for the effect noticed. Since the Rivers-Vouk model implicitly assumes that the
test cases are equally-sized, it is important to identify severe deviations of real-world conditions from this
proposition and take corrective measures.

Plotting for each test case the time spent on its execution against the number of failure occurrences (figure 4)
indeed reveals that for those test cases causing the jumps in figure 3 the testing effort in terms of time is clearly
above average.

As a remedy, we split each of the four test cases with a testing effort of more than 300 minutes into several
medium-sized ones, randomly allocating the failures of the original test case. Since we did not want this
artificial increase in the number of executed test cases to raise the value of test case coverage, the number of
planned test cases was also multiplied by the factor

Number of executed test cases in the adjusted data set

Number of executed test cases in the original data set

The resulting step function is depicted in figure 5.

The three forms of the Rivers-Vouk model, expressed in terms of test case coverage b, were fitted to the
adjusted data set. by, and p,i, were both set to zero. The resulting estimates of N, « and - where it
applies - 0 as well as the SSE and the estimated number of failures observed at full test case coverage are listed
in table 1.

Model fitted | N | & | B | SSE | a(10) |
Constant TE model | 202.35 | 1.332 - 15000 | 202.35
Linear TE model 518.37 | 0.535 - 14732 | 214.63

Unimodal TE model | 268.80 | 1.376 | 1.166 | 13925 | 200.93

Table 1: Results of fitting the different forms of the Rivers-Vouk model to the data set

50
I

Mumber of failure occurrences
20

10

4

o]
o
ii %: . LS I @
o ?ﬂ‘(!
T

T T T T
0 200 400 500 800

Minutes spent on executing test case

Figure 4: Minutes spent on testing and number of failure occurrences for each test case

100 150 200
| | |
|

(Expected) Mumber of failure occurrences
50

T T T T T T
on 0z 04 0g 0g 1.0

Test case coverage

Figure 5: Test case coverage and number of failures experienced ("), and mean value function of the fitted
constant TE model (— —)

In figure 5 the mean value function of the fitted constant TE model is shown, and in figure 6 the mean value
functions of the fitted linear TE model and the fitted unimodal TE model are depicted.

150 200
| 1

(Expectad) Number of failure occurrences
100
l

T T T T T T
0.0 0.2 04 06 0.8 1.0

Test case coverage

Figure 6: Test case coverage and number of failures experienced ("), and mean value functions of the fitted
linear TE model (— —) and the fitted unimodal TE model (—)

Although the relationship between the number of failure occurrences and test case coverage is almost linear in
the adjusted data set, which seems to hint at a constant testing efficiency of about one, the linear TE model
and the unimodal TE model yield a better fit than the constant TE model in terms of the SSE criterion. Since
the unimodal TE model is a generalization of the linear TE model with an additional parameter, the fit of the
former necessarily has to be at least as good as the one of the latter. The fitted mean value functions of all
models are quite similar and predict between eleven and twenty-four additional failures to be experienced until
all of the planned test cases have been executed.

Looking at the estimated number of faults inherent in the software at the beginning of testing, confirms the
suspicions we already have in regard to the excellent fit of all three models: According to the unimodal TE
model about 68 faults will not have been detected at the end of testing, and according to the linear TE model
this number is even 303!

Since the linear TE model has the shape of the Goel-Okumoto model, figure 2 helps us to understand the
reason for both its good fit and its unconvincing estimates: That only about 41 per cent of the faults will have
caused failures after the execution of all test cases basically means that we will only experience the first part
of the mean value function (drawn as a thick line), which is almost linear. Therefore, although the linear TE
model is designed for a situation in which the number of failures experienced per test case decreases as testing
continues, it can fit linear relationships well if only the estimated number of initial faults, N , is large enough.®
Similar arguments apply to the more general unimodal TE model.

As this short analysis of the data set has shown, even if the estimated mean value function of a model
seems reasonable in the region from zero coverage to full coverage, care must be given to the interpretation of
model parameters. If model assumptions (like decreasing testing efficiency) are clearly not in accordance with
real-world conditions, the model should not be used.

4 Conclusions

This research was done in the course of the PETS project (Prediction of software Error rates based on Test
and Software maturity results) funded by the European Commission. One of the goals of this project is to
develop an enhanced software reliability growth model which makes use of information about the maturity of
the software development process and the software test process. Since all of the companies participating at the
project employ some sort of systematic testing regime, it was important to investigate in which way classical
software reliability growth models rely on the fact that the failure data is collected during operational testing.

10

Using the model framework developed in [7] as a starting point for the derivation and interpretation of the
Rivers-Vouk model revealed two merits of this model: First of all, it implicitly assumes perfect efficiency in
sampling code constructs, which is one of the goals of systematic testing strategies. Moreover, unlike other
models specifying the relationship between structural coverage and the number of failure occurrences, the
Rivers-Vouk model takes into account that the latter is not (necessarily) proportional to the former.

Of course, the proposition that all tested code constructs are eliminated from further consideration marks
a limiting case which is not achieved in real world - just like the setup in the model by Piwowarski et al. also
discussed in this paper. While the specification of different testing efficiency functions lays the foundation for
choosing from a variety of models the one which yields the best fit and for drawing conclusion about the testing
process, application of the three forms of the Rivers-Vouk model has shown that the estimated model closest
to the actual data is not necessarily the one whose assumptions correspond best to reality. Therefore, caution
must be given to the interpretation of model parameters and of the estimated testing efficiency. Finally, it
should be understood that the scope of the concept of “testing efficiency” in the Rivers-Vouk model is more
limited than the name suggests.

Notes

'Faults are also named defects, or bugs.
2Operational testing is also called representative testing, or statistical usage testing.

3More precisely, the number of inherent faults is a random variable following a Poisson distribution with
expected value N.

“Problems of this formulation have been discussed by Grottke et al. [8].

5An explanation based not on the shape of the mean value function but on the estimated empirical testing
efficiency is given in [8].

References

[1] Denton, J. A.: Accurate Software Reliability Estimation, Thesis, Colorado State University, 1999,
URL = http://www.cs.colostate.edu/~denton/jd_thesis.pdf (site visited 2001-05-31)

[2] Farr, W.: Software Reliability Modeling Survey, in: Lyu, M. R. (ed.): Handbook of Software Reliability
Engineering, New York, San Francisico, et al., 1996, pp. 71 - 117

[3] Frankl, P. G.; Hamlet, R. G.; Littlewood, B.; Strigini, L.: Evaluating Testing Methods by Delivered
Reliability, IEEE Trans. Software Eng. 24 (1998), pp. 587 -601

[4] Goel, A. L.: Software Reliability Models: Assumptions, Limitations, and Applicability, IEEE Trans.
Software Eng. 11 (1985), pp. 1411 - 1423

[5] Goel, A. L.; Okumoto, K.: Time-Dependent Error-Detection Rate Model for Software Reliability and
Other Performance Measures, IEEE Trans. Reliability 28 (1979), pp. 206 - 211

[6] Gokhale, S. S.; Philip, T.; Marinos, P. N.; Trivedi, K. S.: Unification of Finite Failure Non-Homogeneous
Poisson Process Models through Test Coverage, Technical Report 96-36, Center for Advanced Comput-
ing and Communication, Department of Electrical and Computer Engineering, Duke University, 1996,
URL = ftp://ftp.eos.ncsu.edu/pub/cesp/papers/ppr9636.PS (site visited 2001-05-31)

[7] Grottke, M.: Software Reliability Model Study, Deliverable A.2 of project PETS (Prediction of software
Error rates based on Test and Software maturity results), IST-1999-55017, 2001

[8] Grottke, M.; Dussa-Zieger, K.: Systematic vs. Operational Testing: The Necessity for Different Failure
Models, to appear in: Proc. Fifth Conference on Quality Engineering in Software Technology, Nuremberg,
2001

[9] Musa, J. D.: Operational Profiles in Software-Reliability Engineering, IEEE Software, March 1993,
pp. 14 - 32

11

[10]
[11]
[12]

[13]

[14]

Myers, G. J.: Methodisches Testen von Programmen, 6th edition, Miinchen, Wien, et al., 1999
Newbold, P.: Statistics for Business and Economics, 3rd edition, Englewood Cliffs, 1991

Piwowarski, P.; Ohba, M.; Caruso, J.: Coverage Measurement Experience During Function Test, Proc.
Fifteenth International IEEE Conference on Software Engineering (ICSE), 1993, pp. 287 - 301

Rivers, A. T.: Modeling Software Reliability During Non-Operational Testing, Ph.D. thesis, North
Carolina State University, 1998, URL = http://renoir.csc.ncsu.edu/Faculty /Vouk /Papers/Rivers/Thesis/
Rivers.Thesis.pdf.zip (site visited 2001-05-31)

Rivers, A. T.; Vouk, M. A.: An Empirical Evaluation of Testing Efficiency during Non-Operational
Testing, Proc. Fourth Software Engineering Research Forum, Boca Raton, 1995, pp. 111 - 120,
URL = http://renoir.csc.ncsu.edu/Faculty /Vouk/Papers/SERF96.ps (site visited 2001-05-31)

Rivers, A. T.; Vouk, M. A.: Resource-Constrained Non-Operational Testing of Software, Proc. Ninth
International Symposium on Software Reliability Engineering, Paderborn, 1998, pp. 154 - 163

Thaller, G. E.: Software-Test: Verifikation und Validation, Hannover, 2000

Vouk, M. A.: Using Reliability Models During Testing With Non-Operational Profiles, Computer Science
Department, North Carolina State University, 1992, URL = http://renoir.csc.ncsu.edu/Faculty /Vouk/
Papers/non_op_testing.ps (site visited 2001-05-31)

12

