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Abstract—With an ever-increasing amount of information
made available via the Internet, it is getting more and more
difficult to find the relevant pieces of information. Recommender
systems have thus become an essential part of information
technology. Although a lot of research has been devoted to this
area, the factors influencing the quality of recommendations are
not completely understood.

This paper examines how the quality of the recommendations
made by collaborative filtering recommender systems depends on
the distribution of the number of items rated per user. Specifically,
we show that its skewness plays an important role for the quality
attained by an item-based collaborative filtering algorithm.

Keywords—classification accuracy, collaborative filtering, item-
based recommender system, simulation study, skewness.

I. INTRODUCTION

Globalization and growing specialization have made the
process of obtaining information more and more complex.
Considering the Internet and the huge amount of information
provided over it, the availability of certain information is often
foiled by the flood of data, making it difficult or impossible to
find the information of interest. Recommender systems were
invented to counteract this problem by providing a user with
few pieces of information that might be relevant for him or
her, selected from the mass of data.

Collaborative filtering (CF) is one way to come up with
recommendations. This approach computes recommendations
based on data describing the attitude (e.g., ratings) or the
behavior (e.g., mouse clicks) of users with respect to items.
Such a data set is referred to as a user-item matrix (UI matrix),
because it can be represented as a table with users in rows and
items in columns. Using the available data, a CF algorithm
selects a list of items that are potentially of interest to a specific
user.

It is hardly surprising that the quality of such recommen-
dations depends on the data used to compute the recommen-
dations. Cacheda et al. [1] showed that the density of the
sparse UI matrix (i.e., the proportion of filled-in cells) has an
influence on the quality of recommendations: increasing the
density leads to a gain in quality, which is plausible, because
the recommendations can then be based on a larger amount of
information.

In a current project, we are taking a broader approach to
investigating the influence of the input data on the performance
of various recommender algorithms. For example, even if the
density of the UI matrix is the same for two data sets, the
distribution of the filled-in cells within the matrix might differ
substantially. Understanding how this distribution affects the
quality of recommendations may help to select an appropriate
algorithm for a given data set, and it might guide the devel-
opment of new algorithms that are able to cope with specific
situations.

In this paper, we focus on the skewness of the distribution
of the number of items rated per user. We make the following
main contributions. First, we present an approach for generat-
ing data sets with different skewness of this distribution from
actual observations. Second, we show how receiver operating
characteristics curves both for individual users and for an entire
test data set can be determined in the simulation of item-
based CF algorithms. Third, we carry out a simulation study
demonstrating that the skewness plays an important role for
the quality attained by such algorithms.

The remainder of this work is structured as follows. In
Section II, we give an overview of the related work. The
theoretical background concerning recommender algorithms
and metrics for evaluating recommendation quality is presented
in Section III. After describing the simulation study conducted
in Section IV, we discuss its results in Section V. Concluding
remarks and an outlook on our future work are contained in
Section VI.

II. RELATED WORK

A. Overview of recommender systems

In their survey of CF techniques, Su and Khoshgoftaar
[2] distinguished CF from content-based filtering and hybrid
approaches.

CF uses the “wisdom of the crowd” to recommend items
based on the assumption that if two users similarly value a
set of items they will also value other items similarly [3].
Valuation can be measured either explicitly (typically by
collecting user ratings) or implicitly (typically by monitoring
user behavior, such as mouse clicks or the time spent on
Web sites), and are then stored in the UI matrix [4]. CF
techniques can further be split into neighborhood-based CF978-1-4673-7328-9/15/$31.00 c©2015 IEEE



(also known as memory-based or heuristics-based CF), and
model-based CF [5]. Neighborhood-based approaches make
use of the similarities either between the users (user-based
CF) or between the items (item-based CF) in the UI matrix to
generate item recommendations. Model-based CF algorithms
first develop a model and then provide item recommendations
using the parametrized model. Examples are Bayesian and
regression-based CF [2].

In contrast to CF techniques, which use the similarities of
user ratings for item recommendations, content-based recom-
mender systems generate recommendations by finding matches
between the properties of items.

Both approaches have disadvantages: While CF requires
the UI matrix, content-based filtering needs information on
the item properties [2]. Hybrid techniques, such as content-
boosted CF [5], combine both approaches, thereby attempting
to overcome their limitations. Moreover, they try to include
every available information into the recommendation pro-
cess [6] and also take advantage of more complex methods
(e.g., tensor factorization, matrix factorization, factorization
machines, graph-based approaches).

B. Quality of recommendations

Herlocker et al. [7] examined different metrics that can be
used to measure the quality of recommendations. Employing
432 variations of recommender algorithms and their parameters
on the MovieLens 100k dataset, they correlated eleven metrics
over the recommendations. They identified three classes of
metrics leading to similar results.

Cacheda et al. [1] compared the result quality of eleven rec-
ommender algorithms for different densities of the UI matrix.
To this end, they made use of the MovieLens 100k data set as
well as a subset of the Netflix data set and constructed training
data sets with varying densities by sampling between 10% and
90% of the ratings. They found that the algorithms perform
the better the denser the UI matrix is. However, model-based
approaches are better able to cope with sparse conditions than
memory-based ones.

Zaier et al. [8] examined the influence of the neighborhood
size on the quality of a user-based CF algorithm. According
to their results, the quality of recommendations improves with
an increase in neighborhood size (in the following referred to
as z). This research was conducted for the MovieLens, Netflix
and BookCrossing data sets, which are close to a power-law
distribution, and the Jester data set, whose distribution is not
specified in the paper. They concluded that the quality of
recommendations based on data sets following a power-law
distribution converges more slowly with a dynamically grow-
ing neighborhood size than for data sets that follow some other
distribution. Although the authors focused on the influence of
the distribution of the number of items rated per user on the
quality of recommendations, they neither explicitly specified
the underlying distribution nor investigated the performance
under different well-defined distributional conditions.

Steck [9] used eight metrics for analyzing the application
of two recommender algorithms (namely, Allrank and MF-
RMSE) to the rating prediction task and the ranking task.
He concluded that the performance results for an algorithm

depend less on the task or the metrics considered; rather, the
distribution of the ratings taken into account plays a crucial
role. Here, distribution relates to the proportion of ratings for
items that the user deliberately chooses among the ratings for
all items in the catalog.

C. Stability of recommender algorithms

Adomavicius et al. [10] defined the stability of a rec-
ommender system as the degree to which the predictions
for items remain the same when new ratings which are in
complete agreement with the prior predictions are submitted
to the system. They investigated the stability of five memory-
based and one factorization algorithm, varying data sparsity,
the number of new ratings added, the rating distribution, and
data normalization. In this context, “rating distribution” refers
to the kind of scale used, such as ratings from 1 to 5 (as in the
MovieLens and Netflix data sets) or from -10 to 10 (as in the
Jester data set). The distribution of the number of items rated
per user, which is the focus of our study, was not considered
by these authors.

III. THEORETICAL BACKGROUND

A. Item-based collaborative filtering

For this first investigation into whether the distribution
of the number of items rated per user influences the quality
of recommendations, we decided to study the item-based CF
algorithm. This algorithm is well-known, and it serves as the
basis for implementations in professional environments [11].
Moreover, the fact that it is a rather simple algorithm makes it
easier to comprehend and check the results obtained. However,
our approach can easily be applied to other algorithms, and we
will do so in our future work.

Item-based CF uses the similarity between items in the
UI matrix to make predictions and recommendations. The
UI matrix is a table consisting of n rows for the users
u1, . . . , un and m columns for the items v1, . . . , vm. Its cell
(i, j) contains the rating wi,j that user ui gave for item vj .
Table I shows an example UI matrix for n = 5 users and
m = 6 items. The ratings are on an ordinal scale from 1 (very
bad) to 5 (very good); missing values are indicated with NA
(not available).

TABLE I. EXAMPLE UI MATRIX

v1 v2 v3 v4 v5 v6

u1 NA 1 NA NA 4 2
u2 NA 4 NA 5 5 5
u3 2 3 4 4 5 NA
u4 1 5 5 3 4 4
u5 2 3 4 1 NA 2

1) Similarity calculation: In a first step, the similarities
between all pairs of items need to be calculated. The most
commonly used metrics are cosine similarity, Jaccard cor-
relation [12], and Pearson correlation [2]. Which metric is
reasonable in a given context depends, among other things,
on the measurement scale of ratings. As the data used in
the following study is ordinally scaled, the rank correlation
coefficient due to Spearman [13, p. 141] can be applied.
Spearman’s correlation coefficient s between items vj and vl



is calculated in analogy with Pearson’s correlation coefficient;
however, it does not employ the original ratings of the items
by the ith user, wi,j and wi,l, but their corresponding rank
values ri,j and ri,l. Moreover, rvj and rvl represent the average
rank values of the ratings received by the jth and lth item,
respectively:

svj ,vl =
Σn

i=1(ri,j − rvj )(ri,l − rvl)√
Σn

i=1(ri,j − rvj )2
√

Σn
i=1(ri,l − rvl)2

.

In calculating svj ,vl
, the ith user is only taken into account if

s/he rated both vj and vl (i.e., if both ri,j and ri,l are available).
If the ratings given by one user feature identical values (ties),
average ranks can be employed.

Predictions and recommendations for a specific user are
generated based on the determined similarities. This user is
below referred to as the active user ua.

2) Item-based prediction: For data with ordinal scale level
an item-based prediction ŵa,l of the rating of user ua for item
vl can be calculated based on the following formula [2]:

ŵa,l =
Σm

j=1(ra,j · svl,vj )

Σm
j=1|svl,vj |

The summations are over all other items rated by user ua.

3) Item-based recommendation: Top-N recommendations
consist of the set of the N items considered to be most
interesting for the active user. To this end, a ranking of the
items is calculated, and the top N items are selected. The
item-based top-N algorithm [14] uses as a basis the similarities
between the items (see 1) above), and it works in five steps:

1) It is assumed that a user can evaluate items only if
s/he has previously “purchased” them. Hence, items
that were not “purchased” by the active user ua are
omitted. These are those items vj where the rating
wa,j is not available (NA).

2) For each one of the remaining items vj , the z most
similar items are selected (where z is the neighbor-
hood size). An item vl is the more similar with vj ,
the higher the similarity coefficient svj ,vl

.
3) Those items that the active user has already “pur-

chased” are omitted from the list of z most similar
items obtained in step 2), because these items are not
to be recommended again.

4) The remaining items in all most-similar-items lists
produced are then grouped by item, and for each item
the sum of the similarities with the respective items
already “purchased” by the user ua are calculated.

5) Finally, all items are ranked in descending order
based on the scores obtained in step 4). The first N
items are selected as the list of top-N recommenda-
tions.

B. Metrics for evaluating recommendation quality

Herlocker et al. [7] distinguished between two main classes
of metrics: those for evaluating the prediction accuracy, and
those for evaluating the accuracy of classifications. The former
metrics measure how close the predicted ratings from the
recommender system are to the true user ratings. Mean abso-
lute error (MAE) is frequently used for measuring prediction

TABLE II. CATEGORIZATION OF ITEMS BASED ON THEIR RELEVANCE
AND THEIR RECOMMENDATION BY AN ALGORITHM

not recommended recommended total
irrelevant h00 h01 h0·
relevant h10 h11 h1·

total h·0 h·1 h

accuracy [7], but it is less appropriate for evaluating the task
of finding “good items” [7]. In fact, this is exactly the task that
we are concerned with in this article, because we are interested
in measuring recommendation quality. To this end, metrics for
the accuracy of the classification are appropriate.

These metrics are ratios of correct and incorrect decisions
about the item recommendations of a recommender system [7].
In particular, we make use of the metrics precision and recall as
well as the receiver operating characteristics (ROC) curve and
the precision recall curve (PRC). To explain these concepts, we
consider Table II, in which a total of h items are categorized
based on their actual relevance to a user and the fact whether
or not they have been recommended (i.e., whether or not
relevance to the user has been assumed) by a recommendation
system.

1) Precision and recall: Precision is defined as the ratio
of relevant and recommended items (h11) to all recommended
items (h·1). For example, if an item-based top-20 recommen-
dation algorithms selects 10 relevant items, precision equals
h11/h·1 = 10/20 = 0.5.

Recall, also known as the true positive rate, is the pro-
portion of relevant and selected (recommended) items (h11)
among all relevant items (h1·). For example, if the above-
mentioned item-based top-20 recommendation algorithm se-
lects 10 relevant items, while a total of 50 items are relevant
for the user, recall equates to h11/h1· = 10/50 = 0.2.

Cremonesi et al. [15] described in detail a possible ap-
proach for implementing precision and recall in the context of
the Netflix data set, containing 100 million movie ratings on
a scale from 1 star to 5 stars. When applying these metrics
to the specific problem, the key question to be answered is:
“Which items are relevant to a user, and which are not?”
Cremonesi et al. considered a movie to be relevant for a
specific user if this user gave it a 5-star review. In the
simulation study conducted by these authors to evaluate the
precision and recall of various recommender algorithms, they
focused on one actual 5-star rating per user, and assessed the
accuracy of the respective algorithm in classifying this movie
as relevant. Precision and recall could thus be assessed both for
each individual user and – by averaging the individual results
– for the entire data set.

2) ROC curve and PRC: In the context of classification
in general and recommender systems in specific, the ROC
curve is a graphical representation of the trade-off between the
true positive rate (i.e., the recall) on the y-axis and the false
positive rate (i.e., the percentage of recommended items among
the irrelevant ones, h01/h0·) on the x-axis. From a predicted
ranking of items produced by a top-N recommender algo-
rithm, the ROC curve can be created following the approach
described by Herlocker et al. [7]. Starting at the origin, a line
segment of length 1/h1· is drawn vertically if the first-ranked



item is indeed relevant; otherwise, a horizontal line segment
of length 1/h0· is drawn. This is repeated for all other items
in the ranked list. Basically, this approach amounts to setting
N equal to one and subsequently increasing it, comparing the
true positive rate and false positive rate of the related top-N
algorithm at each step.

A perfect recommender will produce an ROC curve con-
sisting of a vertical line from the origin to (0,1) and a
horizontal line from (0,1) to (1,1). In contrast to this, random
recommendations that do not separate between relevant and
irrelevant items will lead to an ROC curve that lies on the
bisecting line of the diagram. Therefore, the area under the
ROC curve (area under curve, AUC) is a measure of the quality
of the recommendations. The better the classification ability of
the recommender, the larger the AUC. The AUC value can be
interpreted as the probability that a relevant item is actually
classified as such.

Similar to drawing the ROC curve, it is possible to visu-
alize the trade-off between precision and recall. The resulting
diagram is referred to as the precision recall curve (PRC).

It should be noted that the approach by Cremonesi et
al. [15], described above, does not allow to produce meaningful
ROC curves and PRCs for individual users. As these authors
only consider one relevant movie for each user, the recall
attained by a recommender algorithm is either zero or one.

IV. SIMULATION STUDY

A. Data set

The majority of publications on recommender algorithms
is based on two data sets: MovieLens and Netflix. Both data
sets contain movie ratings on a scale from 1 star to 5 stars.
While the Netflix data set was originally published for a contest
between 2006 and 2009, it is currently not available from any
public source. However, MovieLens is still providing different
data sets on its website, with a number of ratings ranging from
100 thousand to 20 million (100k, 1M, 10M and 20M).

Due to the better availability of the MovieLens data, we
decided to use it for conducting our research work, selecting
the MovieLens 10M data set, the largest one available at that
time. In early April 2015, after our simulation study had
already been carried out and when we were just about to
finalize this paper, MovieLens published its 20M data set.
However, we are confident that the overall results of our
simulation study would not have been different if we had based
it on this larger data set.

The 10M data set used here contains about 10 million
ratings from 71.5 thousand users, relating to about 10 thousand
movies. All users selected by MovieLens had rated at least 20
movies. Unlike the 100k and 1M data sets, the 10M MovieLens
data set does not offer any demographic information about the
users.

B. Basic setup

Our simulation study was aimed at investigating how the
distribution of the number of items rated per user influences the
performance of the item-based CF algorithm. Its basic setup
is depicted in Figure 1.

MovLens 10M
71k users

MovLens data
70k users

Test
1k users

Training
3k users

Generate data sets
following different

distributions

Quality of
recommendations

Item-based
CF

algorithm

Measurement

Fig. 1. Setup of simulation study

Throughout our analyses, the same test data set was used.
We generated it from the MovieLens 10M data set by randomly
sampling 1000 users from those users who gave at least five
movies a 5-star rating.

All of the training data sets, always consisting of 3000
users, were sampled from the rest of the MovieLens 10M data
set.

We conducted a total of seven simulations, each one con-
cerned with a specific theoretic distribution of the number of
items rated per user (see Section IV-C). These seven theoretical
distributions did not imply differences in the expected density
of the UI matrix, unlike in the work by Cacheda et al. [1].
Within each simulation, we sampled 20 different training data
sets from this distribution, as explained in Section IV-D. The
item-based CF algorithm was carried out for each training
data set to create recommendations for every user in the
test data set. The quality of the resulting recommendations
can be determined for each individual training set. Also, the
results for the 20 training data sets used in one simulation
can be combined, allowing a more accurate measure of the
performance of the item-based CF algorithm for a certain
underlying distribution of the number of items rated per user.

C. Determining the theoretical distributions

We used the distribution of the number of ratings per user
in the original MovieLens 10M data set as a starting point for
specifying the seven different distributions employed in our
simulation study. While each user in the data set rated at least
20 items, as mentioned above, most discrete distributions, such
as the negative binomial distribution (see [16, pp. 199–235]),
cover the domain N+

0 . However, we found that the number of
ratings per user X could well be modeled with a location-
shifted negative binomial distribution with probability mass
function

P (X = 20 + y) =
Γ(y + k)

Γ(k)y!
pk(1− p)y, y ∈ N+

0 , (1)

and parameters 0 < p < 1 and k > 0. Since the expected
value of this distribution is given by (cf. [16, p. 207])

µX =
k(1− p)

p
+ 20, (2)

the maximum likelihood estimates obtained from fitting the
MovieLens 10M data set, p̂ = 4.5445 · 10−3 and k̂ = 0.5620,
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Fig. 2. Observed relative frequencies of the number of ratings per user, and
probability mass function of the fitted negative binomial distribution

implied an estimated mean of µ̂X = 143.1; on average, every
user rated about 143 movies. The relative frequencies of the
various values of X as well as the fitted probability mass
function (drawn as a single curve to allow comparison in one
diagram) are shown in Figure 2.

All 20 data sets sampled in one simulation were based
on the same location-shifted negative binomial distribution.
Between the simulations, the parameter p was adapted to
change the characteristics of the distribution, such as its
skewness (see below). However, for all distributions simulated
we kept the expected value of X (and hence the expected
density of the UI matrix) fixed at the value obtained for the
MovieLens 10M data set. As is easily seen from Eq. (2), this
could be achieved by setting parameter k in accordance with
the currently-chosen value of p:

k =
123.1 · p

1− p
. (3)

While the expected value of X was thus kept constant, the
skewness of the distribution of X , measured by its third
standardized moment

√
β1,X [16, p. 208], varied as p was

changed: √
β1,X =

2− p√
k(1− p)

=
2− p√
123.1 · p

.

Since
√
β1,X → +∞ as p → 0, while limp→1

√
β1,X =

1/
√

123.1 = 0.0901, varying p in (0, 1) allowed us to
generate both distributions that are extremely right-skewed and
almost symmetric distributions (as well as intermediate cases).
Specifically, for the seven distributions used in our simulations
p was set to 0.0004, 0.004, 0.008, 0.01, 0.04, 0.5, and 0.9.
The probability mass functions of four of these distributions
are depicted in Figure 3 (again using curves rather than bars
representing individual probability masses, making it possible
to draw them in a single diagram).

It should be noted that although µX was fixed, the skewness
is not the only metric of the distribution depending p in our
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approach. For example, its variance (see [16, p. 207]) varied
with p as follows when setting k according to Eq. (3):

σ2
X =

k(1− p)
p2

=
123.1

p
.

D. Sampling from a theoretical distribution

To generate a training data set (approximately) following
the desired theoretical location-shifted negative binomial dis-
tribution from the reduced MovieLens 10M data set (minus the
test data), we sampled 3000 users (without replacement) from
the 70k users, using unequal sampling probabilities. The basic
approach to determining these sampling probabilities was as
follows. For each specific realization x of the number of items
rated per user X , the probability mass assigned according to
Eq. (1) was equally allocated among those users in the data
set who had rated exactly x items.

However, according to this probability mass function all
integer values greater than or equal to 20 occur with a non-zero
probability, while the MovieLens 10M dataset only contains
users with between 20 and 7359 items rated. Moreover, even
for x values below 7359, there are many cases in which none
of the users in the data set rated exactly x items.

Let xno denote such an x value. For each xno, we re-
assigned the related probability mass to the neighboring x
values for which the data set actually contained observations.
More exactly, we split the probability mass P (X = xno)
between the next-lower and the next-higher x values observed,
taking into account their distances to xno. The probability of
the next-lower value P (X = xno,l) and the probability of
the next-higher value P (X = xno,h) were thus increased by
adding

P (X = xno) ·
(

1− xno − xno,l
xno,h − xno,l

)
and

P (X = xno) ·
(

1− xno,h − xno
xno,h − xno,l

)
,

respectively.



TABLE III. THEORETICAL AND AVERAGE EMPIRICAL MOMENTS

p Avg. µ̂X σ2
X Avg. σ̂2

X

√
β1,X Avg.

√
β̂1,X

0.0004 153.6 307750 190841 9.011 6.247
0.004 142.1 30775 29330 2.844 2.770
0.008 142.9 15387 15665 2.007 2.000
0.01 142.6 12310 12396 1.794 1.781
0.04 142.6 3077 3175 0.883 0.915
0.5 142.4 246.2 277.9 0.191 0.198
0.9 142.6 136.8 164.2 0.105 0.107

Based on this approach we are able to use a real-world
data set to approximate drawing a sample from a different
theoretical distribution. Table III compares moments of the
theoretical distributions with the averages of the respective
empirical moments, calculated from the 20 training data sets
in each simulation.

Obviously, the greatest differences are observed for p =
0.0004. This is likely caused by the extreme skewness of the
related negative binomial distribution, which implies that a
sample from this distribution should include many users who
submitted exactly 20 ratings, as well as a rather large number
of users who rated a huge number (like several thousands)
of items. However, the latter kind of users is quite rare in the
MovieLens 10M data set, which explains why the real data set
is not able to perfectly accommodate simulating the desired
theoretical distribution. Nevertheless, the empirical measures
differ significantly from the ones obtained for the simulations
of the next theoretical distribution (with p = 0.004), which
shows that the goal of simulating a highly-skewed distribution
has partially been successful.

For the rest of the considered distributions the average
empirical measures are rather close to the theoretical ones.
For example, all averages of the estimated expected value (µ̂

X
)

agree nicely with the fact that we fixed the expected value of
all theoretical distributions at µ

X
= 143.1.

E. Simulating the application of the recommender algorithm

In our simulation study, the application of the item-based
CF algorithm is simulated in the following steps:

1) For each user ua in the test data set, five randomly-
selected 5-star ratings are set to “not available” (NA).
Similar to Cremonesi et al. [15], we consider these
items to be actually relevant for the user, because of
his/her 5-star rating.

2) Moreover, we sample 995 items from all those items
not rated by ua (and thus considered irrelevant), and
mix them with the five relevant items from step 1).

3) Employing the item-based CF algorithm, we rank
the 1000 test items using the item-based similarities
resulting from each training data set. As a result,
we obtain a rank for most of the 1000 test items.
Sometimes few items cannot be ranked due to a lack
of data precluding the calculation of all similarities
needed.

F. Metrics of recommender quality considered

To evaluate the quality of the recommender task “finding
good items”, we make use of the ROC curve, the AUC and
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the PRC. It should be noted that unlike Cremonesi et al. [15]
we are able to create meaningful ROC curves (or PRCs) for
individual users, because in our simulations the number of
items actually relevant to each user that are to be identified by
the recommender algorithm is five rather than one.

To plot an ROC curve for an individual user after simulat-
ing the application of the recommender algorithm described in
the last section, we make use of the ranks obtained in step 3).
Based on these ranks, we follow the generic approach by
Herlocker et al. [7], described in Section III-B. Let us assume
that 1000 items were recommended, with the relevant items
taking ranks 10, 100, 188, 295, and 559. Starting from the
origin, we draw 9 horizontal line segments of length 1/1000
(which is identical to one horizontal line segment of length
0.009). For our first relevant item at rank 10, we then draw
a vertical line segment of length 1/5. Next, we draw 89
horizontal line segments of length 1/1000 (i.e., one horizontal
line segment of length 0.089), followed by a vertical line
segment of length 1/5 for the second relevant item, and so
on. Figure 4 shows the corresponding ROC curve.

This ROC curve for an individual user is a non-decreasing
step function. Since our test data set consists of 1000 users,
we can aggregate the individual ROC curves to one ROC
curve representing the recommendation performance for the
whole training data set. Repeating this process for each of
the 20 training data sets simulated based on one theoretical
distribution, results in 20 ROC curves. These curves can again
be aggregated to obtain an overall ROC curve, which embodies
aspects of the recommender quality of the recommendation
algorithm for the given theoretical distribution of the number
of items rated per user; Figure 5 shows the curves generated
in our simulations with p = 0.004.

PRCs can be generated analogously to ROC curves. The
PRC for the individual user already considered in the above
example can be seen in Figure 6. For p = 0.004, the PRCs for
all 20 training data sets and the overall PRC are depicted in
Figure 7. The different curves for the various training data sets
(see Figure 5 and 7) do not feature substantial variability. The
curves obtained for the other theoretical distributions of the
number of items rated per user show a similar picture. This
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Fig. 6. PRC for an individual user

indicates that simulating 20 data sets from each distribution
suffices for drawing valid and meaningful conclusions about
the performance of the recommender algorithm based on the
aggregated curves.

As mentioned above, a recommender algorithm may not be
able to rank each relevant item. This occurs when the relevant
item vj rated by the user ua has not been “purchased” by
any other user in combination with other items “purchased”
by ua. As a consequence, the similarities required cannot be
calculated, and the corresponding item is not rankable.

To capture the extent of the inability of a recommender
algorithm to rank a relevant item, we propose the metric
no recommendation rate (NRR), which represents the fraction
of relevant items that could not be ranked. It is possible that
for a specific underlying distribution of the number of items
rated per user a recommender algorithm has a high NRR,
while its predictive performance as measured by AUC is very
good. Therefore, these metrics complement each other in the
evaluation of the behavior of an algorithm.
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Fig. 8. ROC curves for four theoretical distributions

V. RESULTS

Figure 8 shows the overall ROC curves obtained for four
of the theoretical distributions of the number of items rated per
user. Moreover, for all seven distributions studied the AUC is
listed in the second column of Table IV. As can be seen, with
increasing values of p the area under the ROC curve tends to
increase as well. This seems to be a quite reasonable result.

TABLE IV. AUC AND NRR FOR ALL SEVEN THEORETICAL
DISTRIBUTIONS

p AUC NRR
0.0004 63.65% 2.62%
0.004 71.71% 7.55%
0.008 73.72% 9.14%
0.01 75.01% 9.37%
0.04 77.70% 11.14%
0.5 78.76% 11.62%
0.9 78.69% 11.70%
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Fig. 9. PRCs attained for four theoretical distributions

Remember that the lower the value of the parameter p,
the more right-skewed the distribution is. Generally-speaking,
right-skewed distributions have a lot of users who rated few
items and a few users who rated a larger number of items.
In this case, the similarity between two items calculated from
the data is less meaningful because the number of users who
co-rated these items tends to be low.

In contrast, for a symmetric distribution there are many
users with a moderate number of rated items, which implies
a larger number of co-ratings. As a consequence, there is a
broader basis for the calculation of the similarity coefficients,
and the recommendations are of a higher quality. Interestingly,
the AUC calculated for the distribution with p = 0.9 is
slightly lower than the one obtained for p = 0.5. As can
be seen from Table III, there is a relatively small difference
in the skewness of these two distributions. For these almost-
symmetric distributions the higher variance of the one with
p = 0.5 might be beneficial.

Figure 9 shows the PRCs for the same four data sets
as in Figure 8. The result is quite similar to the one for
the ROC curves. For distributions with a higher value of p
the item-based CF algorithm tends to perform better than for
distributions with a lower value of p.

However, it should be noted that there are also drawbacks
of a symmetric distribution. The NRR values listed in the third
column of Table IV indicate that a larger value of p (related to a
more symmetric distribution) is associated with a higher NRR.
This implies that the ability of the item-based CF algorithm
to come up with any ranking for relevant items is the lower
the more symmetric the underlying distribution is. Under such
a distribution, there are fewer users with an extremely large
number of ratings than under a more right-skewed distribution.
While this leads to a larger number of co-ratings per item, the
proportion of items with at least one co-rated item tends to
be lower. As a consequence, the recommendations made are
generally of a better quality, but the percentage of relevant
items being ranked at all is smaller.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we showed that the density of the UI matrix
is not the only aspect of the distribution of the number of
ratings per user influencing the recommendation quality. Other
aspects, such as the skewness of this distribution, play an
important role as well. This suggests that better attention
should be paid to the training data base of a recommender
system and its underlying distribution.

The next steps of our project will be devoted to inves-
tigating how various recommender algorithms perform under
different distributional conditions. Moreover, we will explore
the question of how to develop algorithms that are capable of
coping with specific situations, such as a high skewness. We
are planning to employ the new MovieLens 20M data set for
these analyses.
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