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Abstract: During the last decade, many studies have examined “software aging”, the
phenomenon that long-running software systems show an increasing occurrence rate of
hang/crash failures, progressive performance degradation, or both. This paper deals with the
question how software can age even if no additional faults are introduced into the code. We
discuss several categories of software “bugs” and clarify their definitions as well as their
mutual relationships. We then show how those bugs responsible for software aging fit into
this framework. To counteract software aging, a proactive technique called “software
rejuvenation” has been proposed, which essentially involves stopping the running software
and restarting it after removing the accrued error conditions. Due to the overhead incurred
by software rejuvenation, an optimal timing of its initiation should be sought. We give an
overview of approaches developed for dealing with this important question.

Keywords: aging-related bugs, Bohrbugs, Heisenbugs, Mandelbugs, optimal scheduling,
proactive fault management, software aging, software rejuvenation

1  Introduction other hand get more and more difficult to maintain after

many modifications have been introduced into its source
The term “software aging” has been used for two different code, especially if these modifications are insufficiently
phenomena. Pamas [34] employed it for referring to the documented and not carried out by the original designers.
fact that a piece of software may on the one hand become A different kind of “aging” can be observed even if both
obsolete due to changing user requirements and on the the user requirements and the source code remain stable:
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Researchers and practitioners have reported that software
systems running continuously for a long time tend to show
a degraded performance, an increased occurrence rate of
failures (i.e., deviations of the delivered service from the
correct service) or both due to development faults in the
software. Among the kinds of systems observed to age are
telecommunication billing applications [29], telecom-
munication switching software [2], web servers [27] and
safety-critical military equipment [31]. Although Huang et
al. [29] originally called this phenomenon “process aging”,
the term “software aging” has meanwhile established; see
for example [1], [15], [22] and [42]. This is also the way
in which we will use “software aging” in this paper.
Since software aging focuses on problems caused by
software development faults and explicitly deals with
situations in which the source code is not modified, one
may well wonder how it is possible that the failure
occurrence rate and the performance of software change
over time. While this question has often been discussed,
the terminology previously used in the sofiware aging
literature differs from existing classification schemes for
software faults. The main contribution of this paper is an
effort to reconcile the terminology and to clarify the
relationships between different fault concepts, which is
contained in Section 2.

As our discussion will show, software faults responsible
for software aging are difficult to find in the testing phase
of software development. Therefore, software aging is
mainly dealt with via a fault tolerance technique: Given
the presence of aging-related sofiware faults, the
occurrence of failures is to be avoided by preventively and
proactively stopping the running software, cleaning its
internal state and/or its environment and then restarting it.
Huang et al. [29] introduced this approach as “software
rejuvenation”. Unlike the downtime caused by sudden
software failures, the downtime related to software
rejuvenation can be scheduled at the discretion of the users
or the system administrators, e.g., for periods in which the
workload is predicted to be low. Hence, the costs of
downtime due to software rejuvenation can be expected to
be much lower than the costs of unplanned downtime
caused by a sudden failure. Nevertheless, like all preven-
tive maintenance policies, software rejuvenation incurs an

overhead. Therefore, an optimal timing of software reju-
venation with respect to availability and costs should be
sought. Many research papers on this topic can be found
at [11]. In Section 3, we discuss some of the approaches
used for analyzing and solving of this optimization prob-
lem. A brief summary in Section 4 concludes this paper.

2 Software Faults and Software Aging

Talking about the causes of software-aging and their re-
lationship with other concepts requires a clear definition of
the terminology employed. In this section, we begin with
discussing a number of important concepts used in the
field of dependability. We then review several different
types of software “bugs” and show how the causes of
software aging are related to them.

2.1 Basic Concepts in Dependability

Our definitions of basic dependability concepts largely
follow the recent taxonomy by Avizienis et al. [1].
However, since we focus on aging-related problems of
software applications, we introduce some more specific
definitions.

A system in general is an entity interacting with other
entities, which form the environment of the given system.
For example, a sofiware system interacts with humans
(like users and system administrators) and the physical
world. Most systems are composed of components.
Among the components of a software system are the
specific software application used or tested, other
concurrently running applications, the operating system
and the hardware. Since each component is an entity
interacting with other components and/or the environment
of the entire system, each component can be considered to
be another system. A running software application (con-
sisting of the actual program, its data and its files) there-
fore has an environment encompassing the environment
of the software system as well as the other components of
the software system. To the latter we will refer as the
(sofiware) system-internal environment of the application.
The system-theoretic structure of a software system is
sketched in Figure 1.
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Fig. 1. System-theoretic structure of a software system

If the software system behaves the way it is intended to
(laid down in its functional specification), it delivers
correct service. A (service) failure occurs when the actual
system behavior deviates from correct service. The failure
of one or more services does not necessarily put the
software into a state in which it does not anymore deliver
any correct service. Rather, a subset of services may still
be available, or the services may be offered at a lower
performance. If the user can detect a degraded perfor-
mance [2] or a reduced functionality, then a partial failure
is said to have occurred.

Usually, before a software system suffers a failure it is
already in a state in which there is a discrepancy between
its actual and the correct internal condition, although the
deviation is not perceivable. Such a discrepancy is called
an error. An error may first be transformed into other
errors before it finally leads to a failure. This functional
chain is referred to as error propagation.

The causes of errors are faults. Typical examples of faults
are wrong or missing lines of code. The event that occurs
when a fault produces an error is called fault activation.
The “chain of threats” linking faults, errors and failures,
adapted from [1], is shown in Figure 2.

Avizienis et al. [1] classify faults according to eight
criteria, including the phase of their creation, their
persistence, their phenomenological cause and the fact
whether they originate inside or outside the boundary of

the software system.
propagation

activation / /

fault ————» error —» ... —» error —» failure

Fig.2. “Chain of threats”

Our central question stated in Section 1 is: “How can
wrong lines of codes and other faults in a software
application lead to software aging, although the appli-
cation is not modified?” According to the classification
scheme by Avizienis et al. [1], this problem is concerned
with human-made, intemal, permanent software
development faults. In the following, we will refer to this
type of faults as “software faults” or “(software) bugs” for
the sake of brevity.

2.2 Software Bugs — A Bestiary

Starting with the work of Huang et al. [29], there have
been several attempts to classify software faults respon-
sible for softiware aging according to the distinction
between Bohrbugs and Heisenbugs, see for example [45]
and [46]. All these references draw upon a paper by Gray,
originally written as a technical report in 1985 [24] and
published at a symposium one year later [25]. To the best
of our knowledge, these are indeed the first occasions at
which the two terms were used in print.

The neologism “Bohrbug” alludes to the rather simple
Bohr atom model, in which the electrons move around the
nucleus in orbit at different levels. In his characterization
of Bohr’s model, Gray also uses the word “solid”
(although it would better fit with Dalton’s atomic theory).
The term “Bohrbug” therefore relates to solid or hard [1]
software faults, i.e., faults that are easily detected and
fixed and for which the failure occurrences are easily
reproduced. To summarize it with Gray’s pun: “Bohrbugs
... are ... boring” [24], [25]. Wherever the word is used, it
is done in this vein — see e.g. [8], [36], [37], [48], [51].
For Gray, Heisenbugs are soft or elusive [1] software
faults, for which the failure occurrences are not syste-
matically reproducible. If an operation failed due to a
Heisenbug, retrying the operation may not lead to a
second failure — indeed it is possible that the very act of
trying to observe the failure perturbs the situation and
prevents the failure occurrence [24], [25]. This is the
meaning with which the term is employed in the paper by
Huang et al. [29] and in the subsequent work on software
rejuvenation.

It seems that the word “Heisenbug” was mentioned in
Gray’s papers for the first time; for example, it is not listed
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in The Hacker’s Dictionary [40] from 1983. Nevertheless,
the term is much older. Based on information they re-
ceived from Gray [5], [9], both Birman [4] and Candea [8]
attribute the invention of the word to Bruce Lindsay;
Candea gives a colorful account of how Lindsay came up
with the term at the University of Berkeley in the 1960s.
In recent interviews [7], [55], Lindsay corroborated the
claim that he was involved in creating the word “Hei-
senbug”, which was coined while he and Gray were
working on the CAL-TSS operating system project [55].
Lindsay also states that he thinks it was him who invented
the term [30], which agrees with Gray’s account. The
authorship is of interest, because Lindsay’s explanation of
the meaning differs slightly from the one used by Gray:
Lindsay originally used the word in order to refer to a soft-
ware fault that “went away, because the measurement or
the observation affected the phenomena you were trying
to see” [55]. “So the real definition of a Heisenbug is
when you look, it goes away” [7]. This explanation is
reasonable. “Heisenbug” is obviously a pun on the name
of the physicist Heisenberg, whose Uncertainty Principle
is popularly believed to assert that the act of observing
changes the quantity to be measured [49]. Outside the
field of software rejuvenation, most references mentioning
the word “Heisenbug” use it in this sense, sometimes
including those software faults whose failure behavior
alters (although the failure does not completely disappear)
when it is researched; cf. for example [8], [17], [36], [37],
[47], [49] and [52]. We will therefore stick to the original,
more specific definition according to Lindsay instead of
the one given by Gray.

An interesting collection of field reports about Heisenbugs
can be found at [53]. It reveals that there are two important
categories of how trying to observe a failure can make it
disappear:

1. Some debuggers initialize unused memory to
default values. Failures related to improper ini-
tialization may therefore go away as soon as the
debugger is turned on.

2. Trying to investigate a failure can influence
process scheduling in such a way that the failure
does not occur again. For example, scheduling-

related failures in multi-threaded programs may
disappear when a debugger is used to single-step
through a process, or to set break-points. How-
ever a fault can become a Heisenbug even
without application of any tool. Simple print or
dump commands can sufficiently change the
scheduling of threads. Sometimes even mere
movements of the mouse make a failure go away
by triggering the operating system to give certain
processes a higher priority.

As for the class of elusive software faults, for which Gray
employed the word “Heisenbugs”, there seems to exist
another term: “Mandelbugs™. Again, the word alludes to
the name of a scientist, this time the mathematician
Mandelbrot, who is known best for his research in fractal
geometry. The usual definition of a Mandelbug is “a bug
whose underlying causes are so complex and obscure as
to make its behavior appear chaotic and even non-
deterministic” [37]; see the almost identical definitions in
[8] and [50]. If the “behavior” of the bug is supposed to
refer to the question whether it causes a failure or not, then
“chaotic and even non-deterministic behavior” means that
under seemingly identical conditions sometimes a failure
occurs, while on other occasions no failure is experienced.
This is another way of expressing the fact that a failure is
not systematically reproducible, i.e., that it is caused by an
elusive software fault. We should add that in [54] there are
notable differences in how the term is defined: Firstly, a
Mandelbug is said to have “a single simple cause” [54],
which clearly disagrees with all other references cited
above. Secondly, it is the system that shows a “chaotic
and unpredictable behavior” [54], not the bug; therefore,
this definition seems to have in mind the apparently non-
deterministic nature of failure consequences (e.g., high
fluctuations in wrong output values and varying severities
of the failures caused by a specific fault) rather than the
erratic occurrence/non-occurrence of failures itself. How-
ever, building on the definition consistently used in the
other references cited above, we will essentially equate
Mandelbugs with elusive software faults.

The confusion about the definitions on the one hand and
the fuzziness of the definitions themselves on the other
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hand have also led to discrepancies in statements about
how the classes of Bohrbugs, Mandelbugs and Heisen-
bugs are related to each other. In general, Bohrbugs and
Heisenbugs are considered to be antonyms [8] [40];
several definitions of Mandelbugs include the claim that
they are Bohrbugs rather than Heisenbugs [40], [50];
some people think that all Heisenbugs are Mandelbugs
[18]. Clearly, these three statements are incompatible.
Moreover, if the distinction between Bohrbugs (i.e., hard
faults) and Mandelbugs (i.e., elusive faults) relies on the
fact that failures caused by the former are easily
reproducible, while failures related to the latter cannot be
reproduced systematically, the parting line between the
two classes is essentially subjective: A faultis classified as
a Mandelbug if the circumstances under which it leads to
a failure are judged to be “too complex” for the human
mind to grasp. It has therefore been argued that there is no
real distinction between Bohrbugs and Mandelbugs; in the
end, all software faults are the same [9], [39].

Therefore, we are confronted with the question, whether it
is possible to restate the definitions such that the following
three goals are attained:

1. Reducing (if not eliminating) the subjectivity in
the definitions,

2. clarifying the relationships between the different
categories, and

3. creating a framework into which aging-related
bugs can easily be integrated.

Our suggested definitions are shown in Table 1. The main
difference — from which other changes follow — lies in the
additional explanation of what constitutes the complexity
that makes a software fault a Mandelbug. We identify two
possible cases that are not mutually exclusive: Firstly, a
software fault in a specific application is a Mandelbug, if
its activation and/or its error propagation depend on
interactions with the system-internal environment of the
application. (The idea for this classification criterion is due
to Shetti [39].) Examples are faults causing failures due to
side-effects of other applications and faults for which the
scheduling done by the operating system is crucial for the
occurrence of a failure.

Table 1. Proposed definitions of software fault types

Category
Bohrbug

Proposed definition

A fault that manifests consistently

under a well-defined set of condi-

tions, because its activation and
error propagation lack “complexity”
as set out in the definition of Man-
delbug. Complementary antonym of

Mandelbug.

A fault whose activation and/or er-

ror propagation are complex, where

“complexity” can take two forms:

1. The activation and/or error propa-
gation depend on interactions
between conditions occurring
inside the application and con
ditions that accrue within the
system-internal environment of
the application.

2. There is a time lag between fault
activation and failure occurrence,
e.g. because several different er-
ror states have to be traversed in
the error propagation.

Typically, failures caused by a
Mandelbug are not systematically
reproducible. Complementary anto-
nym of Bohrbug.
A fault that stops causing a failure or
that manifests differently when one
attempts to probe or isolate it. Sub-
type of Mandelbug.
aging-related bug | A fault that leads to the accumula-
tion of errors either inside the run-
ning application or in its system-
internal environment, resulting in an
increased failure rate and/or degra-
ded performance. Sub-type of Man-
delbug.

Mandelbug

Heisenbug

Typically, such faults are difficult to detect, and the
failures related to them are hard to reproduce, because the
uset/tester usually does not know how the system-internal
environment influences the application.

We should point out that in our opinion failure occurren -
ces that are solely induced by the system-internal environ-
ment of specific application are not related to a “Mandel-
bug” in this application. When the system crashes while
testing an application because of a fault in the operating
system, then this fault may be a Bohrbug in the operating
system or a Mandelbug of the operating system, but it is
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not a fault in the application.

Secondly, we classify a fault in an application as a
Mandelbug if complexity of the error propagation results
in a delay between the fault activation and the final failure
occurrence. For example, an erroneous calculation due to
a fault in the software code of an application may be kept
in the memory without immediately causing the service
delivered by the software system to deviate from correct
service; only later, when the result of the calculation is
accessed and used in a way that influences the system
behavior perceivable by the user, a failure will be exper-
ienced. The reproduction of such failures is difficult since
the time lag masks the cause-and-effect relationship
between the execution of an operation and the related
failure.

As a consequence of the difficulties in finding and repro-
ducing Mandelbugs, one should expect that the residual
faults in a thoroughly-tested piece of software mainly
belong to this category. In fact, it has been claimed that
most software faults in production systems are transient in
nature [26].

According to our definitions, Mandelbugs and Bohrbugs
are complementary antonyms; i.e., each software fault
belongs to exactly one of the two categories. Since the
“chain of threats” (see Figure 2) of a Bohrbug features
none of the complexities explained above, reproducing a
failure related to a Bohrbug will generally succeed if the
operation that failed before is retried with the same direct
input values.

The definition of a Heisenbug listed in Table 1 is essen-
tially identical with the one due to Lindsay. The above
discussion of Heisenbugs shows that the act of observing
influences the failure behavior via factors belonging to the
system-intemal environment of the application in which
the Heisenbug is located. Therefore, all Heisenbugs are
Mandelbugs.

It should be noted that one can hardly state a priori which
of the Mandelbugs are Heisenbugs. Whether a Mandel-
bug will stop manifesting or manifest differently depends
on the method or tool employed for probing or isolating it.
While a certain debugger initializing unused memory may
make an initialization-related fault go away, this effect
may not occur when using another debugger. As a conse-

quence, a fault can only be classified as a Heisenbug with
respect to a specific observation method/tool. In Figure 3,
a Venn diagram depicting the relationships between the
different types of software faults, this fact is indicated by
the dashed line enveloping the category of Heisenbugs.

After discussing and defining the other three terms, we
can finally retum to our original question: “How can
software faults in an application lead to software aging,
even if the application is not modified?” Making use of
the conceptual framework of the “chain of threats”, we
can explain the existence of agingrelated bugs, ie.,
software faults responsible for an increasing failure rate
and/or a degraded performance, by the fact that those
faults cause errors to accumulate over time. The error
conditions may accrue either within the running appli-
cation (e.g., round-off errors in program variables) or in
the system-internal environment (e.g., unreleased physical
memory due to memory leaks in the application); cf. our
definition in Table 1. In either case, usually these error
conditions do not lead to a (partial) failure right away —
otherwise, there could be no aging —, but the failures occur
with a delay; this fulfills one of the two criteria for
classifying a software fault as a Mandelbug. Moreover, if
the error conditions accumulate in the system-internal
environment, then the other criterion for a Mandelbug is
met as well, because the occurrence of a failure depends
on conditions existing in the system-internal environment
of the application. Therefore, aging-related bugs are a sub-
type of Mandelbugs, as shown in Figure 3. This explains
why aging-related bugs are often not detected and
removed during the testing phase of software deve-

lopment.

Bohrbugs Mandelbugs

aging-related

. ;
. ,
. Heisen- ,/
.
,
bug:e/

Fig.3. Venn diagram of software fault types
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The class of aging-related bugs of an application may or
may not overlap with the class of those software faults that
are Heisenbugs with respect to a certain observation tool
or method.

3 Approaches to Analyzing Software Aging and
Rejuvenation

There are two kinds of approaches to studying software
aging and deriving optimal software rejuvenation sche-
dules: model-based ones and measurement-based ones.
Model-based approaches are aimed at building analytic
models that capture system degradation and software
rejuvenation. These models are then solved in order to
determine dependability measures (like the steady-state
availability) under a given rejuvenation policy and to
optimize the timing of software rejuvenation.

The basic idea of measurement-based approaches is to
periodically monitor attributes of the software system that
may show signs of software aging (e.g., the physical me-
mory). The collected data is used for assessing the current
“health” of the system and for predicting possible failures
due to aging-related faults.

In the following subsections we review some of the
literature on both types of approaches.

3.1 Model-based Approaches

The first, rather simple, model for software aging and
rejuvenation can be found in the seminal paper by Huang
et al. [29]. The authors propose that a software system
starts out in the highly robust state Sy, in which failures
due to aging are practically impossible. With a constant
transition rate, it may switch to the failure probable state
Sp. Based on our discussion in Section 2, we can identify
this transition with the activation of an aging-related bug.
The propagation of the internal error condition is prone to
lead to a service failure; this possibility is modeled via a
transition into the failure state Sr. Again, the transition rate
is assumed to be constant; i.e., the failure time (from state
Sp) follows an exponential distribution. If a failure occurs,
then the software system has to be “repaired”, e.g.,
restarted. In order to avoid failures, the system can be
rejuvenated as soon as it enters the failure-probable state.

While being rejuvenated the system is in state Sz. After
both repair and rejuvenation the software system is as
good as new, and it therefore returns to the highly robust
state. Like the other time intervals, the time to invoke
software rejuvenation (from state Sp), the time to complete
software rejuvenation and the repair time are all assumed
to follow an exponential distribution. The structure of this
model is depicted in Figure 4. Huang et al. [29] determine
those rates for triggering rejuvenation which maximize the
steady-state availability and minimize the steady-state
costs per time unit, respectively. They come to the
conclusion that if the mean time needed for software
rejuvenation and the average per unit costs of software
rejuvenation are below certain thresholds, rejuvenation
should be invoked as soon as the system switches to the
failure-probable state. If the expected time or costs of
rejuvenation are too high, then rejuvenation should never
be carried out in order to optimize the respective criterion.
The reason for this result is that due to the exponential
failure time distribution the software does not age any
further once it reaches the failure probable state. Therefore,
there is no merit to delaying rejuvenation. If it is at all
beneficial, it should be triggered right away; otherwise, it
should be completely dismissed.

Dohi et al. [12], [13], [14] extend this original model by
allowing for general transition distributions. In their semi-
Markov model, rejuvenation is triggered #, time units after
the system switches to state Sp. The constant #, is deter-
mined such that the steady-state system availability is
maximized [12], [14] or such that the steady-state expec-
ted costs per unit time are minimized [13], [14].

Fig. 4. State transition diagram of a simple model for
software aging and rejuvenation
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Moreover, Dohi et al. [12], [13] consider a variant of the
model according to which software rejuvenation also
needs to be carried out after the repair of the failed system
is completed. For optimizing #, the authors of [12], [13],
[14] apply a non-parametrical statistical technique which
does not require specification of the underlying failure
time distribution. This is a big advantage over other
modeling approaches, because it is in general unknown
from which type of distribution the failure times are
sampled.

Garg et al. [21] also introduce a constant time to invoke
rejuvenation into the basic model by Huang et al. How-
ever, they measure the rejuvenation interval beginning in
the highly robust state Sy. For this end, they formulate the
model as a Markov regenerative stochastic Petri net.
Although Garg et al. assume that the transition time to the
failure probable state as well as the time to fail after
entering that state are exponentially distributed, they show
that it is possible to derive optimal lengths of the
rejuvenation interval minimizing the expected steady-state
unavailability and the expected steady-state costs per time
unit, respectively. At first sight, this seems to contradict
the results by Huang et al., but it is in fact consistent with
them: If we cannot observe the current state of the
software system, for a software starting in the highly
robust state, it becomes more and more probable that it
has switched to the state Sp the longer it has been
operating; therefore, its failure rate tends to increase over
time, and a rejuvenation interval (measured from the
beginning like in the approach by Garg et al.) unequal to
both zero and infinity can be optimal. The situation is
different in the model by Huang et al., because it assumes
that the transition to the failure probable state — after
which the failure rate remains constant — can be observed.
In the Markov regenerative stochastic Petri net model by
Garg et al. [21], the optimization has to be carried out
numerically. However, Suzuki et al. [41] reformulate it as
a semi-Markov model, which can be solved analytically.
The optimal software rejuvenation schedule maximizing
the steady-state availability depends on the distribution of
the overall (i.e., measured from the beginning, when the
software is still in state Sp) time to failure. Applying the
same non-parametric technique as Dohi et al. [12], [13],

[14], Suzuki et al. show that the optimal rejuvenation
interval can be estimated based on data sampled from the
overall time to failure distribution.

As an altemative to the steady-state system availability,
Dohi et al. [16] introduce the expected up rate per unit
cycle. For the semi-Markov models proposed in [12] and
[41] they numerically calculate the software rejuvenation
policies maximizing this new measure of dependability,
and they contrast them with the results obtained based on
the optimization of system availability.

In the models discussed so far, it is implicitly assumed that
the time to complete rejuvenation is significantly shorter
than the time to finish repair; that is why preventive
rejuvenation may increase the steady-state availability
although it incurs an overhead. However, for some
systems recovery and rejuvenation involve the same steps,
which suggests that the time required for both is about the
same. Even if this should be the case, rejuvenation can still
be beneficial. In fact, apart from a possible gain in
availability, rejuvenation cost models tacitly include
further aspects when claiming that the costs per time unit
are smaller for rejuvenation than for repair: For example,
in server-type systems a sudden failure may lead to the
loss of the jobs currently in the system as well as
unavailability in peak periods; planned rejuvenation, on
the other hand, can be scheduled for periods with low
predicted workload. The arrival and queuing of jobs in a
system is explicitly included in the stochastic reward net
model by Garg et al. [20], who study two different
rejuvenation policies: a purely time-based one, (ie., a
fixed rejuvenation interval like in [21]) and a load and
time-based one, in which rejuvenation is only carried out
if the server is idle and the current arrival rate of jobs is
low. As can be expected, the latter policy is superior in
minimizing the number of lost jobs.

The basic structure of all the models mentioned until now
is based on the four-stage model by Huang et al. The
coarse nature of software aging in these models is
criticized by Avritzer and Weyuker [2], who examine
smooth performance degradation in telecommunication
switching software.

Responding to this critique, Bobbio et al. [6] develop a
fine-grained software degradation model in which
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software aging is modeled as a sequence of additive
random shocks. They study two rejuvenation policies: one
based on a pre-assigned risk level, and one based on an
alert threshold. Fujio et al. [19] extend this model by intro-
ducing three different rejuvenation policies. For each of
them, they derive the optimal rejuvenation schedule
maximizing system availability.

A different approach to accounting for smooth degrada-
tion is chosen by Pfening et al. [35], who model perfor-
mance degradation in a server-type system via a time-
dependent service rate.

The model of a transaction-based software system by
Garg et al. [22] includes both hang/crash failures and
performance degradation. Moreover, the times to failure
as well as the service times may follow general distribu-
tions. In fact, the failure and service rates can depend on
time, instantaneous load and mean accumulated load.
Similar to [20], Garg et al. examine two rejuvenation poli-
cies: Under the purely time-based policy, rejuvenation is
invoked after a constant waiting period has elapsed since
the system was (re-)started. Under the instantaneous load
and time-based policy, rejuvenation is triggered as soon as
the system becomes idle for the first time after the
constant waiting time has passed. For both policies, the
authors derive expressions for the steady-state system
availability, the probability of losing an incoming transac-
tion and an upper bound on the response time of a
transaction.

For the same server-type software system, Okamura et al.
[32] introduce two completely workload-based rejuvena-
tion schemes. Instead of a constant waiting period, these
policies involve a specific number of transactions that
have to be completed before the system can be rejuve-
nated.

Okamura et al. [33] extend the model in [22] by conside-
ring multiple servers, and they examine the same two
rejuvenation policies as Garg et al.

An explicit connection between the existence of resource
leaks and an increasing failure rate is established in the
degradation model by Bao et al. [3]. On a higher level, the
authors model proactive fault management via a semi-
Markov process consisting of a working state, a failure
state and a rejuvenation state.

The models mentioned so far only deal with one level of
rejuvenation, usually a full system restart. Vaidyanathan et
al. [44] consider two kinds of preventive maintenance in
operational software systems. Xie et al. [56] generalize the
semi-Markov model presented in [12], [14] by introdu-
cing the possibility of service-level rejuvenation.

In [10] and [43], software aging and rejuvenation in a
cluster system are studied via stochastic reward net
models. For different rejuvenation intervals in a purely
time-based rejuvenation policy, the authors calculate the
expected costs and the expected downtime for various
types of cluster systems. Moreover, they consider a pre-
diction-based rejuvenation policy, in which a node is
rejuvenated when it is predicted to transit into the failure
probable state. Such forecasts can be made with the help
of actual measurements of system parameters, which links
the model-based approaches with the measurement-based
approaches.

3.2 Measurement-based Approaches

As pointed out before, these approaches to studying
software aging and rejuvenation use actual measurements
of observable attributes in order to detect the existence of
software aging, estimate its intensity and predict failure
occurrences due to aging.

Garg et al. [23] analyze software aging in a network of
UNIX workstations. Using an SNMP-based distributed
monitoring tool, they collect operating resource usage
information and system activity data like free real
memory, used swap space and file table size. A
non-parametric trend test reveals significant developments
consistent with the software aging hypothesis for all the
metrics measured on three computers. Garg et al. estimate
these trends via another non-parametric procedure and use
linear extrapolation for predicting the time to exhaustion
for each resource. On all three machines, real memory and
swap space are those resources for which exhaustion is
predicted to occur earliest; the aging of other resources
like file table and process table seems to be comparatively
unimportant. Although the analysis by Garg et al. indicate
daily or weekly periodicities for some of the metrics, they
do not account for seasonality in their predictions.

While the analysis by Garg et al. assumes that memory
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usage merely depends on the elapsed time, Vaidyanathan
and Trivedi [46] consider the influence of system
workload. For this end, they periodically monitor four
variables characterizing the workload, like the number of
system calls as well as the number of page-in and page-
out operations made since the last observation, in addition
to used swap space and free real memory. Using cluster
analysis on the workload data, the authors identify eight
clusters. Based on these clusters a state-transition model
for the system workload is built. The sojourn time
distributions of this model are derived by fitting either a
two-stage hyperexponential or a two-stage hypoexponen-
tial distribution to the empirical data.

Slopes of the development of used swap space are
estimated separately for each of the eight workload states.
Attaching these slopes to the workload states leads to
semi-Markov reward models for used swap space.
Solving this model an overall estimate for the increase of
used swap space per time unit is obtained; based on this
slope, the time to exhaustion of swap space is estimated
via linear extrapolation. The same procedure is repeated
for the free real memory.

For both memory resources the estimated time to
exhaustion produced by the workload-based approach is
significantly lower than the one computed using the
time-based approach employed by Garg et al. [23]. This
result seems to be favorable, because it was indeed
observed that failures due to resource exhaustion tend to
happen earlier than predicted by the time-based method,;
therefore, the workload-based estimations are more
realistic. The reason for this is that in the time-based
approach significant changes in the data are “averaged
out”; the workload-based method, in contrast, separately
considers those “busy hours” in which memory depletes
particularly fast.

However, although different workload states with
individual slopes are identified, the predictions in the
workload-based approach by Vaidynathan and Trivedi
[46] are again linear functions of time.

In connection with the prediction-based rejuvenation
policies for cluster servers mentioned at the end of the last
section, Castelli et al. [10] fit (piecewise) linear trends to
measurements of resource usage taken within a fitting

window, or to the logarithm of these measurements.
Grottke et al. [27] study software aging in an Apache web
server subjected to a synthetic load. Data collected
during experiments in which the server was put in an
overload condition indicate the presence of software aging.
Furthermore, the data reveal how configuration settings
related to the operating system as well as to the web server
itself can influence the development of resource utilization.
Both nonparametric techniques and parametric time series
models are employed for data analysis. While previous
research did not account for seasonality in the predictions
of resource usage, the authors explicitly model the
existing seasonal pattern and exploit it for forecasting the
future behavior.

Hong et al. [28] suggest a closed-loop approach to
software rejuvenation in which service-level rejuvenation
or system-level rejuvenation are triggered based on the
periodic measurements of the degrading resource. Under a
linear degradation assumption, they compare closed-loop
rejuvenation with a purely time-based (open-loop) policy
as well as the situation without rejuvenation. In an
experiment, they apply their closed-loop approach to an
Apache web server with a simulated memory leak.

A completely different approach to the analysis of aging
in memory resources is chosen by Shereshevsky et al. [38].
These authors do not model and predict memory
utilization itself, but they monitor the local rate of fractali-
ty of the system parameters via the Holder exponent, and
they conclude that the second abrupt increase in this

measure indicates an imminent system crash.

4 Conclusions

For one decade, the phenomenon that long-running
software systems often exhibit an increasing failure rate
and/or a degrading performance, has been studied under
the name of “software aging”. The underlying causes of
this phenomenon, aging-related bugs, have often been
discussed together with so-called “Heisenbugs”. In this
paper, we have shown that the way in which the term
“Heisenbug” has been used in the software aging
literature differs from its original meaning as well as the
definition usually employed in software engineering and
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testing. For several categories of bugs we have suggested
revised definitions that help to clarify their mutual
relationships. Moreover, we have given an overview over
the research in both model-based an measurement-based
approaches to software aging and rejuvenation.
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