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Abstract—Researchers in the field of software engineering
economics have associated team factors, such as team size
and team experience, with productivity and quality. Since dis-
tributed and open source development have gained significance
in the past few years, further empirical investigation is needed.

Our study contributes to the empirical body of knowledge
by addressing this development. In particular, we investigate
the association between team factors and failure process-
ing efficiency for closed source software releases of a large
commercial software vendor and for open source software
projects registered with SourceForge.net. We find significant
links between team experience and the failure processing
efficiency. However, our data does not show any evidence for
adverse effects of distributed development. Our results further
suggest that service level agreements and process governance
are good tools to guarantee satisfactory processing times.

Keywords-closed source software, development teams, empir-
ical analysis, failure processing, open source software

I. I NTRODUCTION

For decades, software development organizations have
been confronted with the consequences of poor software so-
lution quality and customer dissatisfaction [1]. Tremendous
effort has been spent on improving software development to
increase productivity and quality, while eliminating rework
and waste [2]. Especially high release complexity and tight
development schedules seem to cause the introduction of
a large number of defects into the software [3]. However,
many researchers claim that defects can never fully be
avoided: Although software development is a structured
process consisting of several stages, it is still human-centric
[3]. It is thus advocated to keep rework effort low by aiming
at finding and fixing defects as early as possible [4], and to
derive process improvements based on the insights gained
from the defects detected [5].

Since defects are not fully avoidable, efficient defect
handling, which consists of recording, tracking, and solving
of defects, is crucial for software development [6]. Thereby,
one aspect software managers are confronted with is the
improvement of failure processing efficiency to avoid the
negative effects of long-pending failure reports. Severalfac-
tors that may influence the failure processing efficiency have
been investigated [7]–[9]. As software development remains

a human-centric activity, team factors are of particular
interest. Indeed, recent empirical studies have provided some
evidence to the assumption that team factors affect the failure
processing efficiency [9], [10].

Our research objective is to empirically investigate the
influence of team factors on failure processing efficiency.
We are especially interested in settings where no dedicated
team for failure processing has been established and the
processing is done by the development team itself. Though
being uncommon in stages close to maintenance, such setups
are frequently encountered in the implementation phase of
large software development projects, especially when agile
development practices are applied. A better understanding
of the analyzed factors will help software managers direct
process improvements as well as achieve a higher failure
processing efficiency.

Because open source software development has recently
gained in significance [11], we conduct our analyses in
two research settings: at a commercial software vendor,
and at SourceForge.net. Thus, our study does not only
examine the influence of team factors on failure processing
efficiency in the context of closed source software, but it also
helps reveal differences between the open and closed source
software development paradigms with regards to processing
efficiency.

To the best of our knowledge, this is one of the first studies
investigating team factors and failure processing efficiency in
both closed and open source software development, relying
on a rather large sample size and on large releases. It also
differs from prior research, such as [12] and [13], since it
studies the factors in a setting where no dedicated team for
failure processing has been established.

The remainder of this paper is structured as follows: In
Section II, prior research related to our study is presented.
Next, Section III derives our conceptual research framework.
In Section IV, we introduce the research sites as well as
the variable measures, and we present the empirical results.
In Section V, we discuss our findings, before presenting
potential threats to validity in Section VI. The paper closes
with Section VII, summing up the key findings and giving
an outlook on future research.
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II. RELATED WORK

Several streams of research are devoted to failure pro-
cessing in general and to failure processing efficiency in
particular. These include research investigating bug trackers,
such as Zhao and Elbaum [14] and Gupta and Singla [15],
as well as work on failure processing effort prediction, such
as Song et al. [16] and Grottke and Graf [17].

However, the research stream most closely related to
our study is concerned with the task of failure processing
itself, its efficiency, and the people involved. Frequently,
the collaboration of the developers involved in processing
an individual failure is investigated from a coordination-
theoretical perspective [9], [18]. Different fault-, people-,
and team-related factors have been investigated and linked
to processing efficiency [8]. Studies report differences be-
tween closed and open source development projects and
suggest that closed source development projects respond to
failures more quickly than open source development projects
[13]. This is in contradiction with Paulson et al. [19] and
Raymond [20], who claim that a rapid response to reported
failures is a particular strength of open source development.
Other research studies team- and product-related factors in
the context of maintenance. Most frequently, the influence
of software complexity on the maintenance performance is
studied; empirical evidence suggests that it is indeed a major
factor [21].

Like many other researchers, Banker et al. [7] investigate
how software complexity and functional size are linked with
software maintenance and failure processing performance.
They use data on 17 major applications, written in COBOL,
from a major regional U.S. bank. Their study suggests that
software maintenance performance is significantly affected
by software complexity: As complexity increases, perfor-
mance worsens. Based on this finding, they conclude that
it is important to keep software complexity low during
development to improve performance during the subsequent
maintenance phase. This is an expected finding, since main-
tenance is conducted by a different team of developers, who
are often unfamiliar with the software coding [7].

At Cisco Systems, Agrawal and Chari [12] investigate
nine software products with more than 10,000 reported
failures. With their study, they try to identify those factors
having the highest influence on the repair times of the
failure-related faults. Their results suggest that the repair
times are influenced by several factors, such as fault severity,
skill level, and tool support.

For post-release failures, Yu and Chen [13] compare the
failure processing and fault correction efficiency in closed
and open source development projects. They employ three
metrics: the time it takes until a failure is reported after
the software has been released, the time interval between
the reporting of a failure and its assignment to a developer,
and the time it takes to fix a fault after the related failure

has been assigned to a developer. For their study, they rely
on data of the NASA Ames projects, as well as three open
source projects, namely, Apache Tomcat, Apache Ant, and
Gnome Panel. Their results suggest that in closed source
development projects failures are responded to more quickly,
and the related faults are corrected faster.

Our study differs from prior research in several ways:
First, we are interested in settings where no dedicated team
for failure processing has been established and the process-
ing is done by the development team itself. Prior studies,
such as Banker et al. [7] and Agrawal and Chari [12], are
devoted to settings where such a team is in place. Second,
this is one of the first studies investigating team factors
and failure processing efficiency in closed and open source
software development. For instance, Agrawal and Chari [12]
only focus on closed source software development projects,
while Yu and Chen [13] merely propose efficiency metrics
and compare them between closed and open source software
development projects. Third and finally, our study is based
on a rather large sample size and on large releases, while
most prior research relies on a small number of small
projects.

III. R ESEARCHFRAMEWORK

Our study of the influence of team factors on failure
processing efficiency is based on the research framework
shown in Figure 1. It investigates the following two research
questions in settings where no dedicated team for failure
processing has been established:

1) Which team factors influence the average pending
time of failures reported for a release?

2) Which team factors influence the average solving
time of failures reported for a release?

Consistent with prior research on failure processing [12],
[13], we define efficiency in terms of the time spent on
processing a failure. As depicted in Figure 2, we divide the
overall processing time for an individual failure into two
parts: the time it takes to assign a developer after a failure
has been reported (in the following referred to as ‘pending
time’), and the time it takes to close the failure after a
developer has been assigned (hereafter referred to as ‘solving
time’). Since all team factors studied are measured for an
entire release, we cannot use them to model the processing
time of an individual failure. Instead, we use the average
pending and solving times of all failures related to a release
as the dependent variables to be explained.

Due to the importance of human performance in software
development, investigations of software quality have often
considered team factors. In our exploratory study we make
use of team factors identified by previous work.

For instance, Krishnan [10] examines the role of team
factors for the quality of packaged software products at
a leading software vendor. For his study he relies on a
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Figure 1. Conceptual research framework

sample of 37 products. His results suggest that increased
team capabilities and team domain experience reduce the
number of shipped product faults, whereas the experience
of the team with the programming language used may not
affect quality.

Bird et al. [22] study the effect of team dispersion on the
product quality of Windows Vista in terms of its post-release
failures in an intra-organizational setting. In contrast to prior
research, they provide evidence that distributed development
has little or no effect on the product quality of Vista.
They conclude that for large software development projects,
distributed development can work if the right development
practices are chosen.

We focus on four team factors, expecting the following
effects regarding failure processing efficiency (see Figure 1):

Team productivity: An increase in development produc-
tivity might adversely affect the average pending and solving
times, because the developers may focus more strongly on
generating new code than on coping with existing problems.

Team size: A larger team might increase the average
pending time, since it becomes more difficult to identify the
responsible developer who should process a specific failure
report.

Team dispersion: A higher team dispersion might also
adversely affect the average pending time, because identi-
fying the developer responsible for a failure becomes more
complicated.

Team experience:Better experience can be assumed to
increase failure processing efficiency (in terms of average
pending and solving times), since the team members get
more accustomed to dealing with failures.

Prior research suggests that process- and product-related
factors may influence software development performance.
We should thus control for such factors.

For example, MacCormack et al. [23] show that employ-
ing a development practice particularly tailored to the type
of software developed may improve quality. Moreover, the
maturity level of the development process seems to affect the
stability and reliability with which processes are performed
[7], [24]. Furthermore, empirical research provides evidence
that software release size and complexity have a significant
effect on development performance [7]: As the software
grows in size and/or complexity, it becomes more difficult
for a developer to understand its dependencies. On the
one hand, this increases the likelihood of introducing faults
into the software. On the other hand, the time required to
comprehend the cause of a software failure and to fix the
related fault tends to get longer.

In our research framework we therefore control for the
four process and product influences shown in Figure 1.

Failure is 

reported

Failure is 

assigned

Failure is 

closed

Solving timePending time

Processing time

Figure 2. Failure processing steps
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IV. M ETHODS, ANALYSIS, AND RESULTS

In this section, we first introduce the research sites, the
variable measures, and the data analysis techniques used.
We then present the empirical results of our study.

A. Research Sites and Data Collection

For our study, we gather data at two research sites to
investigate the differences between closed source commer-
cial software development and open source development.
The first site is a commercial software vendor (hereafter
referred to as the Vendor), where we cooperated with one
development unit. This particular unit is in charge of new
product development and does not have a dedicated team
responsible for failure processing. Development is globally
distributed, but it follows a strict development model.

The second research site is SourceForge.net. At the end
of March 2009, the time we gathered the data for our study,
SourceForge.net was hosting more than 140,000 open source
software projects. In line with the open source philosophy,
SourceForge.net makes all project data stored on its platform
available to research. The large sampling population and the
wealth of accessible data per project make SourceForge.net
an excellent research site for studying open source software
development [25]. By nature, open source development
teams are virtually distributed. We can further assume that
there are no dedicated teams for failure processing.

In the following, we discuss in detail the data sources
used and the data collection methods employed at these two
research sites.

1) Commercial Software Vendor:At the Vendor’s site,
we use data from three major data sources. The first one is
the time reporting and cost accounting system, where
all effort-related information is collected. Employees are
required to record all times expended at the activity level
on a daily basis. Since each activity is linked to one specific
project, the effort and times per release can easily be aggre-
gated. To ensure proper usage of the different activity types,
data quality and validity, random samples of the reported
effort data are cross-checked (e.g., by controlling experts).
In addition to effort data, we also extract information on
project staffing and organizational structure from the system.

Our second data source is thebug tracker, which we
use for accessing failure data. During development, when a
tester or quality expert experiences an unexpected software
behavior, s/he enters a failure report into the bug tracker.
Among other data, this report contains the time of its
creation and information on the unexpected behavior. During
failure processing, further information, like the closingdate,
is added.

Thesoftware configuration management systemis used
to gather information about the software release. Since
software changes constantly, multiple versions of the same
release, including source code and requirements, need to be
managed. Through the software configuration management

system, we access data on the size and the complexity of
the software, as well as on the number of requirements
implemented.

Due to service level agreements and process governance,
data quality and reliability at the Vendor’s site can be
expected to be high. To ensure internal validity, it is rec-
ommended that the objects under investigation are homo-
geneous [7]. Since all releases were developed at the same
unit within a short time span, the organizational structure,
the maturity of the processes, and the development practices
employed can be assumed to be identical for all releases.
Expert interviews conducted at the Vendor’s site confirm this
conjecture. Hence, besides data completeness we only use
one further criterion for release selection: We exclusively
consider releases written in one specific programming lan-
guage; those using other programming languages were not
taken into account. Based on these two selection criteria, we
compile a set of 31 releases.

2) SourceForge.net:Our study relies on information re-
lated to three SourceForge.net services. The source code of
each considered project is accessed via thesource code
repository. Furthermore, we gather basic information on
each reported failure (e.g., its processing time) from thebug
tracker . Finally, thegeneral project statisticsare used to
collect project-related information, such as team size.

Not all projects hosted at SourceForge.net are suitable
for our study. As before, the projects examined should not
be too heterogeneous; in addition, we also want them to
be comparable to the releases investigated at the Vendor’s
site. Moreover, all required data has to be available; for
example, the projects need to make active use of the bug
tracker, allowing us to calculate processing times for failures
of different priorities. Furthermore, the processes employed
have to be mature enough for data collection to ensure
reliable data. We therefore follow a strict selection process.

In a first step, we collect the first 250 projects listed in
each of the two categories ‘Enterprise’ and ‘Financial’ in
the SourceForge.net software map. These categories are non-
exclusive. Dropping the 17 duplicates, we obtain a set of 483
unique projects.

In a second step, we then rank these projects by two
criteria: the development activity (a metric calculated by
SourceForge.net), as well as the number of downloads.
Based on these criteria, we select the 354 top projects.

In a third step, we drop projects with a development status
of less than 5 (raising doubts about the the process and
product maturity), as well as projects for which less than 5
developers are registered. Moreover, we omit those projects
for which manual checks reveal that the bug tracker is not
actively used or that no priorities are assigned to the failures.

This three-step approach results in a final set of 31 proj-
ects. For our analysis, we include the latest release of each
of these projects.
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B. Variable Measurement

In the following, we describe how the factors are oper-
ationalized in our study. For each of the factors included
in our models, the name of the variable is given. We also
discuss which factors are excluded from our study, because
they are constant, or unobserved, or assumed to be highly
correlated with other factors.

1) Dependent Factors:For the dependent variables, we
use the same metrics at both research sites.

Average pending time (AvgPendTime):We calculate the
pending time of an individual failure as the time span (in
minutes) between the initial failure report and the first action
taken in response to it. For a release or project, the average
pending time is computed as the arithmetic average of the
pending times of all high-priority failures reported. We only
take into account high-priority failures, because the failure
processing efficiency shows best in the ability to quickly deal
with urgent problems [8]. More specifically, we consider the
failures with the highest priority at the Vendor’s site, andthe
failures with priorities 7, 8, and 9 at SourceForge.net.

Average solving time (AvgSolvTime):We calculate the
solving time of an individual failure as the time span (in
minutes) between the first action taken in response to the
failure report and its final closure. For a release or project,
the average solving time is calculated as the arithmetic
average of the solving times of all high-priority failures
reported. The priorities considered are the same as for the
average pending time.

2) Independent Factors:Team productivity (Team-
Prod): Development productivity until software shipment
is measured as the software size in source lines of code
(SLOC) divided by the development effort in person days.
As is often the case for open source development projects
[26], effort data is not available for our sample collected at
SourceForge.net. Therefore, we can measure development
productivity at the Vendor’s site only.

Team size (TeamSize):The team size is given by the
number of people involved in the software development
project. For the Vendor, we measure this variable in terms of
the number of developers staffed on the project developing
the specific release. In the case of the open source software
releases, we utilize the number of people involved in the
project according to the SourceForge.net project statistics.
This metric is derived from explicit registrations with a
project and therefore represents the core team processing
failures, while the periphery of occasional failure reporters
is ignored [24].

Team dispersion (TeamDisp): For the Vendor, team
dispersion is calculated from the fractions of total effort
spent at each one of then development locations/centers
(Effort1, . . . ,Effortn) [24]:

TeamDisp= 1002 −

n∑

i=1

(Efforti)
2.

Note that all effort fractions Efforti are expressed as
percentage values between0 and100.

Information on the fractions of total effort spent at
each development location/center is not available at Source-
Forge.net. We could compute the team dispersion metric by
assuming that each core team member represents one virtual
development center and that the total development effort is
evenly distributed among them. However, such assumptions
are overly simplistic and cannot be expected to yield a valid
measure. We therefore exclude team dispersion from our
analysis of the open source development projects.

Team experience:It has been shown that better team
experience can strongly increase performance, because the
people are more familiar with the tasks they perform [27].
In the context of failure processing, an obvious metric of
team experience is the number of failure reports handled
by the development team members prior to the current
release. However, we can only apply this metric at the
Vendor’s site, because only there we can access the history of
failure reports with which the team members have previously
been involved(TeamExpV). To measure experience in the
SourceForge.net setting, we can only rely on the age of the
project, a metric suggested by Au et al. [28]. For our open
source development projects, we thus measure experience
in terms of the number of minutes since the project was
registered with SourceForge.net(TeamExpSF).

3) Control Factors: Release size (FuncSize):At the
Vendor’s site, there is a strict and formally defined re-
quirements engineering process. As a consequence, all re-
quirements tend to be of similar granularity. We can thus
measure size of the closed source releases in terms of the
number of implemented requirements. The different projects
from SourceForge.net, however, do not follow the same
requirements engineering process. For them, the number
of requirements is thus not a reliable metric of functional
size. Since the projects also utilize different programming
languages, we cannot simply measure functional size by
SLOC either. Employing the table provided at [29], we
therefore convert the SLOC measures obtained with the
SLOCCount tool [30] into function points [31]. While SLOC
can only be roughly mapped to function points, for the open
source projects this is still the most reliable measure of
functional size available to us.

Since prior studies have shown that many software com-
plexity metrics are highly correlated with software size
[32], [33], we exclude complexity from our study to avoid
collinearity issues [34] in our models.

4) Constant or Unobserved Factors:As mentioned in
Section IV-A1, there is evidence that process maturity and
development practice are constant over all of the Vendor’s
releases. Therefore, we do not include these two factors in
our models for the closed source projects.

Likewise, due to the strict selection process employed
when choosing projects from SourceForge.net we can as-
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Table I
OLS REGRESSION RESULTS FOR ALL LOG-LINEAR MODELS

Vendor SourceForge.net

Variables ln(AvgPendTime) ln(AvgSolvTime) ln(AvgPendTime) ln(AvgSolvTime)

(Intercept) 4.2855∗∗ 7.6073∗∗∗ 4.3089 2.2537

(1.2681) (1.4066) (5.4356) (4.0014)

ln(TeamProd) 0.0165 0.1250

(0.0686) (0.0760)

ln(TeamSize) 0.1011 −0.0040 0.2146 0.1836

(0.1029) (0.1141) (0.1904) (0.1415)

ln(TeamDisp) 0.0212 −0.0905

(0.1161) (0.1287)

ln(TeamExpV ) −0.0598∗∗ −0.0531∗

(0.0174) (0.0193)

ln(TeamExpSF) 0.6192 1.1572∗

(0.5797) (0.4418)

ln(FuncSize) 0.4809∗∗ 0.3978∗ 0.0253 −0.0581

(0.1677) (0.1860) (0.2430) (0.1767)

R2 0.4364 0.3457 0.0991 0.3101

F -statistic 3.7170 2.5362 0.9536 3.8951

p-value 0.0124 0.0559 0.4293 0.0201

Sample size 30 30 30 30

* p < 0.05, ** p < 0.01, *** p < 0.001. (Standard errors are given in parentheses.)

sume that the process maturity is at a comparable level
across these open source projects. Information on the de-
velopment practice is not available from SourceForge.net.
Moreover, our discussion of the independent factors in the
last section has shown that team productivity and team
dispersion cannot be measured reliably for these open source
projects. Consequently, we omit the factors process maturity,
development practice, team productivity, and team disper-
sion in the models for the SourceForge.net releases.

C. Data Analysis Techniques

We conduct all our quantitative analyses with the statisti-
cal software package R [35].

Prior empirical research on software engineering eco-
nomics recommends a log-linear model of project and
release performance [7], [24]. We therefore apply a log
transformation to all variables.

To test the adequacy of our models, we use Ramsey’s
RESET [36]; no misspecification is detected. The parameters
of the log-linear models are then estimated via the ordinary
least squares (OLS) approach. Note that we estimate the
models for both research sites separately, because different
variables are included and different metrics are employed.

To ensure that the assumptions of the OLS approach
are met, we use a variety of specification checks for the
estimated models. Both visual examination of the residual
plots as well as the DFFIT measure [37] indicate one

influential observation in the data of all four models. Each
of the models is therefore re-estimated after removing the
respective influential observation from the data set. The
resulting parameter estimates are shown in Table I. They
are very similar to the original ones.

Based on the reduced data sets, we use variance inflation
analysis [38] to check for the presence of multicollinearity.
For all models, the values of the variation inflation fac-
tors (VIF) range from 1.15 to 1.99, with a mean VIF of
1.47. Since potential problems due to multicollinearity are
indicated by VIF values above 5.3 [39], we conclude that
multicollinearity is not a serious issue in our analysis.

At the 5% significance level the Shapiro-Wilk test [40]
cannot reject the normality assumption for the residuals of
any of the four models. Furthermore, neither the Breusch-
Pagan test [41] nor the White test [42] indicates any violation
of the homoscedasticity assumption for any of the models.
In other words,there is no evidence that any of the assump-
tions of the chosen parametric data analysis technique are
violated.

D. Regression Results

For theVendor models, the parameter estimates in Table I
indicate that better team experience is associated with a
shorter average pending time of failures, whereas a larger
functional size tends to be linked to a longer average
pending time. Similar results are obtained with respect to
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the average solving time. Since the regression coefficients
in log-linear models represent elasticities, a 1% increase
in team experience tends to reduce average pending time
and average solving time by about 0.06% and 0.05%,
respectively. However, a 1% increase in functional size is
linked with a 0.48% increase in average pending time and
a 0.39% increase in average solving time. No significant
association between the remaining independent variables and
the dependent variables can be established.

As for the analysis of theSourceForge.netproject data,
the low coefficient of determinationR2 indicates that
the model for the average pending time has hardly any
explanatory power. Moreover, the highp-value associated
with the small value of theF -statistic shows that the
hypothesis that all regression coefficients are equal to zero
cannot be rejected at any reasonable significance level, such
as 5% or 10%. For the other model, our results suggest that
better team experience is linked with longer average solving
times; a 1% increase in team experience is associated with
about a 1.16% increase in average solving time.

V. D ISCUSSION

The results for theVendor indicate that larger functional
size is associated with a lower failure processing efficiency.
In fact, prior studies have shown that software size has a
strong negative influence on efficiency in general [7], [24].
This finding can be explained by the fact that the functional
size of a piece of software is related to its complexity. When
a software product’s source code grows in size, it tends to
become more complex and more difficult to understand for
its developers [7]. Hence, not only does it take longer for the
developer to decide if s/he is responsible for a failure and
should process it, but s/he also needs more time for solving
the failure.

The positive association between team experience and
failure processing efficiency observed at the Vendor’s siteis
expected and consistent with prior research [24]. In general,
it can be assumed that team experience and knowledge
regarding a particular task increase as the team members
repeat it over and over again. By processing more failures
the developers become more efficient for two reasons: First,
they get better in deciding who is responsible for a particular
software failure; this effect improves the average pending
time of failures. Second, the developers get better in process-
ing the failures related to their coding; this effect reduces
the average solving time. In consequence, failure processing
efficiency increases.

For the remaining factors, our study does not indicate
any significant influences on the failure processing efficiency
at the Vendor’s site. As discussed above, the development
practice employed could be the reason why team size and
dispersion do not show any effect. This development practice
might also ensure that the development team has enough
time to process failures, regardless of the development

productivity. Appropriate development practices may thus
help guarantee efficient failure processing [22].

At SourceForge.net, the observed association between
team experience and the average solving time is unexpected.
We would have assumed that better experience results in
a higher processing efficiency. However, remember that we
followed Au et al. [28] in utilizing project age as the measure
of team experience. In many open source projects developers
join and leave frequently [43]. Over time, the improvements
in experience on the part of the team members are therefore
limited. On the contrary, in long-running projects developers
tend to be faced with the challenge of processing failures
related to parts of the code that had been implemented before
they joined the development team.

The factors release size and team size do not seem to have
any effect on the failure processing efficiency. This may be
explained by the fact that open source development projects
are highly dispersed and driven by individual contributors.
Therefore, they are modularized in a more fine granular way
than closed source development projects. They can hence
avoid the pitfalls of complexity at the expense of less team
work and the boost in creativity that it implies.

According to Table I, the explanatory power of the
SourceForge.net models in terms of the coefficient of deter-
minationR2 is lower than the one of the corresponding Ven-
dor models. For the model of average pending time, it has
not even been possible to reject the global hypothesis that all
regression coefficients are jointly equal to zero (see Section
IV-D). Figure 3 gives us some interesting insights into the
differences between the closed and open source development
projects with respect to the dependent variables. Obviously,
for the open source releases the average pending and solving
times show a much higher variation than for the releases of
the commercial software vendor. (Note that the releases with
average pending or solving times exceeding 53,000 minutes
and thus falling outside the scale of they-axes are shown
as an ‘x’ at the top of the diagram.) Only parts of the huge
fluctuations observed for the open source releases can be
explained by the log-linear models. The lower variability
for the closed source releases may be due to the service
level agreements and process governance that are in place
at the Vendor’s site, ensuring reasonable failure processing
times.

In the literature, the quick response to and solving of
reported failures have been seen as a particular strength of
open source development [20]. However, some researchers
have provided evidence that closed source software develop-
ment responds more quickly to failure reports [13]. Figure 3
gives an explanation for these contradictory findings. Based
on a large sample of projects or releases, the overall failure
processing efficiency tends to be higher in closed source
development than in open source development, provided
that service level agreements and process governance are
in place. However, some individual open source projects
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Figure 3. Failure processing efficiency

do indeed attain failure processing efficiencies comparable
to those of closed source projects. Well-established open
source projects are known for their large and very active
community, which is helpful for fast failure processing. The
results of studies focusing on single cases thus highly depend
on the particular releases/projects chosen. For instance,
Raymond [20] focuses on well-established large open source
development projects, such as Linux or Gcc, whereas Yu
and Chen [13] and our study consider smaller and/or less
established ones.

In summary, service level agreements and process gover-
nance can be seen as good tools to guarantee satisfactory
failure processing times. However, if the power of the
community can be leveraged processing efficiency may be
increased even further. In addition, it seems that the failure
processing efficiency is not influenced as strongly by team
factors as one might expect. Besides team factors, it can be
assumed that failure-related factors (such as severity of the
failure’s consequences and clarity of the failure description)
and the extent of tool support are crucial for the failure
processing efficiency attained; see Crowston and Scozzi [9]
and Gokhale and Mullen [8].

VI. T HREATS TOVALIDITY

Construct Validity: For the collection of our data, we
relied on automated production-level quality tools, as well
as on a strict selection process. We further excluded those
factors from our study for which we could not guarantee
reliable measurement. Therefore, we do not think that our
data has been subject to any large measurement errors.

Internal Validity: Since our regression diagnostics
showed no violation of the regression assumptions, we have
reason to believe that the we correctly identified significant
associations. Furthermore, we derived the factors from
general work on software engineering performance; we
therefore assume that the conclusions drawn are valid.

External Validity: Software development processes and
projects do vary across research settings. It must therefore be
assumed that our results are only valid in research settings
comparable to ours. For instance, they probably cannot be
transferred to embedded software development. However,
our study might indicate important general principles and
associations.
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VII. C ONCLUSIONS

In this study, we investigated the influence of team factors
on failure processing efficiency. Since open source devel-
opment has recently gained significance, we conducted our
study in two research settings: at a large software vendor,
and at SourceForge.net. We thus contribute to the empirical
body of knowledge on closed and open source software
development. Prior studies either focused on single releases
or on closed or open source software development. As far
as we know, this is one of the first studies investigating
team factors and failure processing efficiency in closed and
open source software development, comparing their failure
processing efficiency, and relying on a rather large sample
size and on large releases instead of small projects.

Our results indicate that appropriate development prac-
tices can prevent the negative effects of distributed develop-
ment on the failure processing efficiency. Our study further
suggests that the level of team experience affects failure
processing efficiency. After processing many failure reports,
team members know who is responsible for what part of the
coding, and they are also able to solve the problems more
quickly. Software managers should thus support learning in
their organization to improve processing efficiency. More-
over, if service level agreements and process governance are
in place, closed source development teams seem to show
consistent failure processing efficiencies. However, well-
established open source development projects can achieve
comparable results.

Further research should especially be devoted to distribut-
ed development and the concepts of team experience and
learning. Since recent studies have suggested that the ad-
verse effects of distributed development can be avoided by
adequate development practices, more research is needed to
understand what aspects of such practices are of importance.
As team experience has been shown to have a significant
positive association with failure processing efficiency in
closed source projects, it would be interesting to investigate
how learning takes place in software development in general.
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