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Abstract—Researchers in the field of software engineering a human-centric activity, team factors are of particular
economics have associated team factors, such as team sizejinterest. Indeed, recent empirical studies have providetes

and team experience, with productivity and quality. Since &-  ayjgence to the assumption that team factors affect theréalil
tributed and open source development have gained significap . -
processing efficiency [9], [10].

in the past few years, further empirical investigation is neded. RS L o . . )

Our study contributes to the empirical body of knowledge Our research objective is to empirically investigate the
by addressing this development. In particular, we investigte  influence of team factors on failure processing efficiency.
the association between team factors and failure process- We are especially interested in settings where no dedicated
ing efficiency for closed source software releases of a large taam for failure processing has been established and the
commercial software vendor and for open source software Lo .
projects registered with SourceForge.net. We find significat Processing 1S dong by the developmer?t team itself. Though
links between team experience and the failure processing Peinguncommon in stages close to maintenance, such setups
efficiency. However, our data does not show any evidence for are frequently encountered in the implementation phase of
adverse effects of distributed development. Our results fither large software development projects, especially whereagil
suggest that service level agreements and process goveroan  jeyelopment practices are applied. A better understanding
are good tools to guarantee satisfactory processing times. . .

of the analyzed factors will help software managers direct

~ Keywords-closed source software, development teams, empir- process improvements as well as achieve a higher failure
ical analysis, failure processing, open source software processing efficiency.

Because open source software development has recently
gained in significance [11], we conduct our analyses in

For decades, software development organizations havo research settings: at a commercial software vendor,
been confronted with the consequences of poor software sand at SourceForge.net. Thus, our study does not only
lution quality and customer dissatisfaction [1]. Trememslo examine the influence of team factors on failure processing
effort has been spent on improving software development tefficiency in the context of closed source software, butsioal
increase productivity and quality, while eliminating reko helps reveal differences between the open and closed source
and waste [2]. Especially high release complexity and tighsoftware development paradigms with regards to processing
development schedules seem to cause the introduction efficiency.
a large number of defects into the software [3]. However, To the best of our knowledge, this is one of the first studies
many researchers claim that defects can never fully bénvestigating team factors and failure processing efficyen
avoided: Although software development is a structuredoth closed and open source software development, relying
process consisting of several stages, it is still humarricen on a rather large sample size and on large releases. It also
[3]. It is thus advocated to keep rework effort low by aiming differs from prior research, such as [12] and [13], since it
at finding and fixing defects as early as possible [4], and testudies the factors in a setting where no dedicated team for
derive process improvements based on the insights gainddilure processing has been established.
from the defects detected [5]. The remainder of this paper is structured as follows: In

Since defects are not fully avoidable, efficient defectSection I, prior research related to our study is presented
handling, which consists of recording, tracking, and salvi Next, Section Il derives our conceptual research fram&wor
of defects, is crucial for software development [6]. Thgreb In Section IV, we introduce the research sites as well as
one aspect software managers are confronted with is thiéhe variable measures, and we present the empirical results
improvement of failure processing efficiency to avoid theln Section V, we discuss our findings, before presenting
negative effects of long-pending failure reports. Sevirad  potential threats to validity in Section VI. The paper close
tors that may influence the failure processing efficiencyehav with Section VII, summing up the key findings and giving
been investigated [7]-[9]. As software development remain an outlook on future research.

I. INTRODUCTION
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Il. RELATED WORK has been assigned to a developer. For their study, they rely
) on data of the NASA Ames projects, as well as three open
Several streams of research are devoted to failure prasg,rce projects, namely, Apache Tomcat, Apache Ant, and
cessing in general and to failure processing efficiency inGhome Panel. Their results suggest that in closed source
particular. These include research investigating budk&®s  gevelopment projects failures are responded to more guickl
such as Zhao and Elbaum [14] and Gupta and Singla [15]ynq the related faults are corrected faster.
as well as work on failure processing effort prediction,tsuc study differs from prior research in several ways:
as Song et al. [16] and Grottke and Graf [17]. First, we are interested in settings where no dedicated team
However, the research stream most closely related t@or failure processing has been established and the process
our study is concerned with the task of failure processingng is done by the development team itself. Prior studies,
itself, its efficiency, and the people involved. Frequently sych as Banker et al. [7] and Agrawal and Chari [12], are
the collaboration of the developers involved in processingjeyoted to settings where such a team is in place. Second,
an individual failure is investigated from a coordination- this is one of the first studies investigating team factors
theoretical perspective [9], [18]. Different fault-, pden  and failure processing efficiency in closed and open source
and team-related factors have been investigated and linkeghftware development. For instance, Agrawal and Chari [12]
to processing efficiency [8]. Studies report differences begnly focus on closed source software development projects,
tween closed and open source development projects aRghijle Yu and Chen [13] merely propose efficiency metrics
suggest that closed source development projects respond 4@d compare them between closed and open source software
failures more quickly than open source development prsjectgeyelopment projects. Third and finally, our study is based
[13]. This is in contradiction with Paulson et al. [19] and gn 3 rather large sample size and on large releases, while

Raymond [20], who claim that a rapid response to reportegnost prior research relies on a small number of small
failures is a particular strength of open source developmenprojects_

Other research studies team- and product-related faators |

the context of maintenance. Most frequently, the influence IIl. RESEARCHFRAMEWORK

of software complexity on the maintenance performance is Qur study of the influence of team factors on failure
studied; empirical evidence suggests that it is indeed amaj processing efficiency is based on the research framework
factor [21]. shown in Figure 1. It investigates the following two reséarc

Like many other researchers, Banker et al. [7] investigatgjuestions in settings where no dedicated team for failure
how software complexity and functional size are linked with processing has been established:
software maintenance and failure processing performance. _ : .
They use data on 17 major applications, written in COBOL, 1 Wh'Ch tea}m factors influence the average pending
from a major regional U.S. bank. Their study suggests that __ time of failures reported for a release? .
software maintenance performance is significantly affiecte 2) Wh'Ch tegm factors influence the average solving
by software complexity: As complexity increases, perfor- time of failures reported for a release?
mance worsens. Based on this finding, they conclude that Consistent with prior research on failure processing [12],
it is important to keep software complexity low during [13], we define efficiency in terms of the time spent on
development to improve performance during the subsequemrocessing a failure. As depicted in Figure 2, we divide the
maintenance phase. This is an expected finding, since maigverall processing time for an individual failure into two
tenance is conducted by a different team of developers, whgarts: the time it takes to assign a developer after a failure
are often unfamiliar with the software coding [7]. has been reported (in the following referred to as ‘pending

At Cisco Systems, Agrawal and Chari [12] investigatetime’), and the time it takes to close the failure after a
nine software products with more than 10,000 reportedieveloper has been assigned (hereafter referred to aggolv
failures. With their study, they try to identify those facdo time’). Since all team factors studied are measured for an
having the highest influence on the repair times of theentire release, we cannot use them to model the processing
failure-related faults. Their results suggest that theairep time of an individual failure. Instead, we use the average
times are influenced by several factors, such as fault $gveri pending and solving times of all failures related to a redeas
skill level, and tool support. as the dependent variables to be explained.

For post-release failures, Yu and Chen [13] compare the Due to the importance of human performance in software
failure processing and fault correction efficiency in clbse development, investigations of software quality have rofte
and open source development projects. They employ threeonsidered team factors. In our exploratory study we make
metrics: the time it takes until a failure is reported afteruse of team factors identified by previous work.
the software has been released, the time interval between For instance, Krishnan [10] examines the role of team
the reporting of a failure and its assignment to a developeffactors for the quality of packaged software products at
and the time it takes to fix a fault after the related failurea leading software vendor. For his study he relies on a
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Figure 1. Conceptual research framework

sample of 37 products. His results suggest that increased Prior research suggests that process- and product-related
team capabilities and team domain experience reduce tHactors may influence software development performance.
number of shipped product faults, whereas the experiencé/e should thus control for such factors.

of the team with the programming language used may not
affect quality.

Bird et al. [22] study the effect of team dispersion on the

For example, MacCormack et al. [23] show that employ-
ing a development practice particularly tailored to theetyp

! ) = : of software developed may improve quality. Moreover, the
product quality of Windows Vista in terms of its post-releas mayrity level of the development process seems to affect th

failures in an intra-organizational setting. In contr@sptior  gapility and reliability with which processes are perfedn
research, they provide evidence that distributed devedmpm [7], [24]. Furthermore, empirical research provides enicte

has little or no effect on the product quality of Vista. yhat software release size and complexity have a significant
They conclude that for large software development projectSyffect on development performance [7]: As the software
distributed development can work if the right developmentgrOWS in size and/or complexity, it becomes more difficult

practices are chosen. _ ~ for a developer to understand its dependencies. On the
We focus on four team factors, expecting the following one hand, this increases the likelihood of introducingtéul
effects regarding failure processing efficiency (see EdUr  into the software. On the other hand, the time required to
Team productivity: An increase in development produc- comprehend the cause of a software failure and to fix the
tivity might adversely affect the average pending and swjvi related fault tends to get longer.
times, because the developers may focus more strongly on
. . . e In our research framework we therefore control for the
generating new code than on coping with existing problems : -
: ) . four process and product influences shown in Figure 1.
Team size: A larger team might increase the average
pending time, since it becomes more difficult to identify the
responsible developer who should process a specific failure

report. | &————  Processing time —

Team dispersion: A higher team dispersion might also —_— _—
. R . . |<— Pending time —>|<— Sol t —>|
adversely affect the average pending time, because identi- 9 oving fime

fying the developer responsible for a failure becomes more _
complicated. g >

Team experience:Better experience can be assumed to

. ) . . ) Failure is Failure is Failure is
increase failure processing efficiency (in terms of average reported assigned closed
pending and solving times), since the team members get

more accustomed to dealing with failures. Figure 2. Failure processing steps
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IV. METHODS, ANALYSIS, AND RESULTS system, we access data on the size and the complexity of

In this section, we first introduce the research sites, théhe software, as well as on the number of requirements
variable measures, and the data analysis techniques usdgiPlemented.
We then present the empirical results of our study. Due to service level agreements and process governance,
data quality and reliability at the Vendor’s site can be
expected to be high. To ensure internal validity, it is rec-

For our study, we gather data at two research sites temmended that the objects under investigation are homo-
investigate the differences between closed source commegeneous [7]. Since all releases were developed at the same
cial software development and open source developmentnit within a short time span, the organizational structure
The first site is a commercial software vendor (hereaftethe maturity of the processes, and the development practice
referred to as the Vendor), where we cooperated with onemployed can be assumed to be identical for all releases.
development unit. This particular unit is in charge of newExpert interviews conducted at the Vendor’s site confirra thi
product development and does not have a dedicated teasonjecture. Hence, besides data completeness we only use
responsible for failure processing. Development is gligbal one further criterion for release selection: We exclusivel
distributed, but it follows a strict development model. consider releases written in one specific programming lan-

The second research site is SourceForge.net. At the engliage; those using other programming languages were not
of March 2009, the time we gathered the data for our studytaken into account. Based on these two selection critega, w
SourceForge.net was hosting more than 140,000 open sourgempile a set of 31 releases.
software projects. In line with the open source philosophy, 2y sourceForge.netOur study relies on information re-
SourceForge.net makes all project data stored on its platfo |ateq to three SourceForge.net services. The source code of
available to research. The large sampling population a@d thegch considered project is accessed via gharce code
wealth of accessible data per project make SourceForge.nginository. Furthermore, we gather basic information on
an excellent research site for studying open source satwalgach reported failure (e.g., its processing time) frombihg
development [25]. By nature, open source developmengacker. Finally, thegeneral project statisticsare used to

teams are virtually distributed. We can further assume thatq)ject project-related information, such as team size.

there are no dgdlcated teams fo_r fa"“re_ processing. Not all projects hosted at SourceForge.net are suitable
In the following, we discuss in detail the data sources,

d and the dat llecti thod loved at th t for our study. As before, the projects examined should not
;Jesseea?:h sitZs ata coflection methods employed at tnese o, 140 heterogeneous; in addition, we also want them to

. o be comparable to the releases investigated at the Vendor’s
Wel)usio(;grt];e][f(')?# i?g\garlrrw:l'(\)/regg?arA;otlTrie\;erjr(:l()er?ir:tlt?)'ne Isite. Moreover, all required data has to be available; for
. . J : j @xample, the projects need to make active use of the bug
the time reporting and cost accounting system where

all effort-related information is collected. Emplovees ar tracker, allowing us to calculate processing times foufais
ired t :j Il ti lon 1 ded t' th P t}/ it | Iof different priorities. Furthermore, the processes eiygio
required to record all imes expendea at tne activity 1evel, o 15 pe mature enough for data collection to ensure

on a daily basis. Since each activity is linked to one SpeCIfICreIiabIe data. We therefore follow a strict selection pssce

roject, the effort and times per release can easily be aggre . . . . .
proJ P y .~ In a first step, we collect the first 250 projects listed in

gated. To ensure proper usage of the different activitydype h of the t : ios ‘Enterorise’ and ‘Fi ol i
data quality and validity, random samples of the reporteoeac ot the two categories "Enterprise: an inanciat in
effort data are cross-checked (e.g., by controlling espert the SourceForge.net software map. These categories are non

In addition to effort data, we also extract information on exclusive. Dropping the 17 duplicates, we obtain a set of 483

project staffing and organizational structure from theeyst unique projects. _

Our second data source is theg tracker, which we [0 @ second step, we then rank these projects by two
use for accessing failure data. During development, when §iteria: the development activity (a metric calculated by
tester or quality expert experiences an unexpected saftwarSourceForge.net), as well as the number of downloads.
behavior, s/he enters a failure report into the bug trackef®ased on these criteria, we select the 354 top projects.
Among other data, this report contains the time of its In athird step, we drop projects with a development status
creation and information on the unexpected behavior. @urin of less than 5 (raising doubts about the the process and
failure processing, further information, like the closidgte, —Product maturity), as well as projects for which less than 5
is added. developers are registered. Moreover, we omit those pject

The software configuration management systernis used ~ for which manual checks reveal that the bug tracker is not
to gather information about the software release. Sinc@ctively used or that no priorities are assigned to the el
software changes constantly, multiple versions of the same This three-step approach results in a final set of 31 proj-
release, including source code and requirements, need to leets. For our analysis, we include the latest release of each
managed. Through the software configuration managemeiwf these projects.

A. Research Sites and Data Collection
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B. Variable Measurement Note that all effort fractions Effostare expressed as

In the following, we describe how the factors are oper-Percentage values betweerand 100.
ationalized in our study. For each of the factors included Information on the fractions of total effort spent at
in our models, the name of the variable is given. We alsach development location/center is not available at $surc
discuss which factors are excluded from our study, becausg®rge-net. We could compute the team dispersion metric by
they are constant, or unobserved, or assumed to be highRSSUming that each core team member represents one virtual

correlated with other factors. evelopment center and that the total development effort is
1) Dependent FactorsFor the dependent variables, we €venly distributed among them. However, such assumptions
use the same metrics at both research sites. are overly simplistic and cannot be expected to yield a valid

Average pending time (AvgPendTime)We calculate the ~Mmeasure. We therefore exclude team dispersion from our
pending time of an individual failure as the time span (in@nalysis of the open source development projects.
minutes) between the initial failure report and the firstact ~ Team experience:It has been shown that better team
taken in response to it. For a release or project, the averag&Perience can strongly increase performance, because the
pending time is computed as the arithmetic average of th@eople are more familiar with the tasks they perform [27].
pending times of all high-priority failures reported. Welyn In the context of failure processing, an obvious metric of
take into account high-priority failures, because theufail ~t€am experience is the number of failure reports handled
processing efficiency shows best in the ability to quickiglde Py the development team members prior to the current
with urgent problems [8]. More specifically, we consider thef€lease. However, we can only apply this metric at the
failures with the highest priority at the Vendor's site, g¢hd ~ Vendor’s site, because only there we can access the hisftory o
failures with priorities 7, 8, and 9 at SourceForge.net. failure reports with which the team members have previously

Average solving time (AvgSolvTime):We calculate the —been involvedTeamExp,/). To measure experience in the
solving time of an individual failure as the time span (in SourceForge.net setting, we can only rely on the age of the
minutes) between the first action taken in response to thBroject, a metric suggested by Au et al. [28]. For our open
failure report and its final closure. For a release or projectSource development projects, we thus measure experience
the average solving time is calculated as the arithmetiéh terms of the number of minutes since the project was
average of the solving times of all high-priority failures registered with SourceForge.r@eamExpse).
reported. The priorities considered are the same as for the 3) Control Factors: Release size (FuncSize)At the
average pending time. Vendor's site, there is a strict and formally defined re-

2) Independent Factors:Team productivity (Team- quirements engineering process. As a consequence, all re-
Prod): Development productivity until software shipment quirements tend to be of similar granularity. We can thus
is measured as the software size in source lines of cod@easure size of the closed source releases in terms of the
(SLOC) divided by the development effort in person days_number of implemented requirements. The different preject
As is often the case for open source development projectéom SourceForge.net, however, do not follow the same
[26], effort data is not available for our sample collectéd a Fequirements engineering process. For them, the number
SourceForge.net. Therefore, we can measure developmepit requirements is thus not a reliable metric of functional
productivity at the Vendor’s site only. size. Since the projects also utilize different programgnin

Team size (TeamSize)The team size is given by the languages, we cannot simply measure functional size by
number of people involved in the software developmentSLOC either. Employing the table provided at [29], we
project. For the Vendor, we measure this variable in terms otherefore convert the SLOC measures obtained with the
the number of developers staffed on the project developingLOCCount tool [30] into function points [31]. While SLOC
the specific release. In the case of the open source softwaf@n only be roughly mapped to function points, for the open
releases, we utilize the number of people involved in thesource projects this is still the most reliable measure of
project according to the SourceForge.net project stesisti functional size available to us.
This metric is derived from explicit registrations with a  Since prior studies have shown that many software com-
project and therefore represents the core team processifeXity metrics are highly correlated with software size
failures, while the periphery of occasional failure repest  [32], [33], we exclude complexity from our study to avoid
is ignored [24]. collinearity issues [34] in our models.

Team dispersion (TeamDisp): For the Vendor, team 4) Constant or Unobserved FactorsAs mentioned in
dispersion is calculated from the fractions of total effortSection IV-Al, there is evidence that process maturity and
spent at each one of the development locations/centers development practice are constant over all of the Vendor's

(Efforty, . .., Effort,) [24]: releases. Therefore, we do not include these two factors in
n our models for the closed source projects.

TeamDisp= 100 — Z(Eﬁorti)Q- Likewise, due to the strict selection process employed

— when choosing projects from SourceForge.net we can as-
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Table |
OLSREGRESSION RESULTS FOR ALL LOG.INEAR MODELS

Vendor SourceForge.net

Variables In(AvgPendTime) In(AvgSolvTime) In(AvgPendTime) In(AvgSolvTime)
(Intercept) 4.2855** 7.6073%** 4.3089 2.2537

(1.2681) (1.4066) (5.4356) (4.0014)
In(TeamProd) 0.0165 0.1250

(0.0686) (0.0760)
In(TeamSize) 0.1011 —0.0040 0.2146 0.1836

(0.1029) (0.1141) (0.1904) (0.1415)
In(TeamDisp) 0.0212 —0.0905

(0.1161) (0.1287)
In(TeamEXxg,) —0.0598** —0.0531*

(0.0174) (0.0193)
In(TeamExp) 0.6192 1.1572*

(0.5797) (0.4418)

In(FuncSize) 0.4809** 0.3978* 0.0253 —0.0581

(0.1677) (0.1860) (0.2430) (0.1767)
R? 0.4364 0.3457 0.0991 0.3101
F-statistic 3.7170 2.5362 0.9536 3.8951
p-value 0.0124 0.0559 0.4293 0.0201
Sample size 30 30 30 30

* p < 0.05 **p<0.01, * p<0.001. (Standard errors are given in parentheses.)

sume that the process maturity is at a comparable levehfluential observation in the data of all four models. Each
across these open source projects. Information on the def the models is therefore re-estimated after removing the
velopment practice is not available from SourceForge.netespective influential observation from the data set. The
Moreover, our discussion of the independent factors in theesulting parameter estimates are shown in Table I. They
last section has shown that team productivity and teanare very similar to the original ones.

dispersion cannot be measured reliably for these opensourc Based on the reduced data sets, we use variance inflation
projects. Consequently, we omit the factors process ntgturi analysis [38] to check for the presence of multicollinearit
development practice, team productivity, and team disperFor all models, the values of the variation inflation fac-

sion in the models for the SourceForge.net releases. tors (VIF) range from 1.15 to 1.99, with a mean VIF of
1.47. Since potential problems due to multicollinearite ar
C. Data Analysis Techniques indicated by VIF values above 5.3 [39], we conclude that

Wi quct all titati | ith the statisti multicollinearity is not a serious issue in our analysis.
€ conduct all our quantitalive analyses wi € Stalist= At the 5% significance level the Shapiro-Wilk test [40]

cal software package R [35]. ) : . .
. e . . cannot reject the normality assumption for the residuals of
Prior empirical research on software engineering eco-

. d loa-I del of : any of the four models. Furthermore, neither the Breusch-
nhomics recommends a log-linear model of project an agan test [41] nor the White test [42] indicates any violati

releafse per_formaml:le [7.]’b524]' We therefore apply a IOgof the homoscedasticity assumption for any of the models.
transformation to all variables. In other wordsthere is no evidence that any of the assump-

To test the adgquacy_ _Of our _models, we use Ramsey§,ng of the chosen parametric data analysis technique are
RESET [36]; no misspecification is detected. The parameter,

. i ) €le1Giolated

of the log-linear models are then estimated via the ordinary

least squares (OLS) approach. Note that we estimate the .

models for both research sites separately, because tmilffereD' Regression Results

variables are included and different metrics are employed. For theVendor models, the parameter estimates in Table |
To ensure that the assumptions of the OLS approachdicate that better team experience is associated with a

are met, we use a variety of specification checks for theshorter average pending time of failures, whereas a larger

estimated models. Both visual examination of the residuafunctional size tends to be linked to a longer average

plots as well as the DFFIT measure [37] indicate onepending time. Similar results are obtained with respect to
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the average solving time. Since the regression coefficientsroductivity. Appropriate development practices may thus
in log-linear models represent elasticities, a 1% increaséelp guarantee efficient failure processing [22].

in team experience tends to reduce average pending time At SourceForge.net the observed association between
and average solving time by about 0.06% and 0.05%team experience and the average solving time is unexpected.
respectively. However, a 1% increase in functional size i3VMe would have assumed that better experience results in
linked with a 0.48% increase in average pending time ané higher processing efficiency. However, remember that we
a 0.39% increase in average solving time. No significanfollowed Au et al. [28] in utilizing project age as the measur
association between the remaining independent variabtés a of team experience. In many open source projects developers
the dependent variables can be established. join and leave frequently [43]. Over time, the improvements

As for the analysis of th&ourceForge.netproject data, in experience on the part of the team members are therefore
the low coefficient of determinatiorR? indicates that limited. On the contrary, in long-running projects devedop
the model for the average pending time has hardly anyend to be faced with the challenge of processing failures
explanatory power. Moreover, the highvalue associated related to parts of the code that had been implemented before
with the small value of theF-statistic shows that the they joined the development team.
hypothesis that all regression coefficients are equal to zer The factors release size and team size do not seem to have
cannot be rejected at any reasonable significance levedi, suany effect on the failure processing efficiency. This may be
as 5% or 10%. For the other model, our results suggest tha&xplained by the fact that open source development projects
better team experience is linked with longer average sglvin are highly dispersed and driven by individual contributors
times; a 1% increase in team experience is associated witFherefore, they are modularized in a more fine granular way
about a 1.16% increase in average solving time. than closed source development projects. They can hence
avoid the pitfalls of complexity at the expense of less team
work and the boost in creativity that it implies.

The results for th&/endor indicate that larger functional According to Table 1, the explanatory power of the
size is associated with a lower failure processing effigienc SourceForge.net models in terms of the coefficient of deter-
In fact, prior studies have shown that software size has ainationR? is lower than the one of the corresponding Ven-
strong negative influence on efficiency in general [7], [24].dor models. For the model of average pending time, it has
This finding can be explained by the fact that the functionalnot even been possible to reject the global hypothesis that a
size of a piece of software is related to its complexity. Whenregression coefficients are jointly equal to zero (see 8ecti
a software product’'s source code grows in size, it tends tdV-D). Figure 3 gives us some interesting insights into the
become more complex and more difficult to understand fodifferences between the closed and open source development
its developers [7]. Hence, not only does it take longer fer th projects with respect to the dependent variables. Obwousl
developer to decide if s/he is responsible for a failure andor the open source releases the average pending and solving
should process it, but s/he also needs more time for solvingmes show a much higher variation than for the releases of
the failure. the commercial software vendor. (Note that the releasds wit

The positive association between team experience anaverage pending or solving times exceeding 53,000 minutes
failure processing efficiency observed at the Vendor'sisite and thus falling outside the scale of theaxes are shown
expected and consistent with prior research [24]. In géneraas an ‘x’ at the top of the diagram.) Only parts of the huge
it can be assumed that team experience and knowleddgictuations observed for the open source releases can be
regarding a particular task increase as the team membeexplained by the log-linear models. The lower variability
repeat it over and over again. By processing more failure$or the closed source releases may be due to the service
the developers become more efficient for two reasons: Firstevel agreements and process governance that are in place
they get better in deciding who is responsible for a pardéicul at the Vendor’s site, ensuring reasonable failure proogssi
software failure; this effect improves the average pendindimes.
time of failures. Second, the developers get better in @®ce  In the literature, the quick response to and solving of
ing the failures related to their coding; this effect redsice reported failures have been seen as a particular strength of
the average solving time. In consequence, failure proogssi open source development [20]. However, some researchers
efficiency increases. have provided evidence that closed source software develop

For the remaining factors, our study does not indicatement responds more quickly to failure reports [13]. Figure 3
any significant influences on the failure processing effiggen gives an explanation for these contradictory findings. Base
at the Vendor's site. As discussed above, the developmemin a large sample of projects or releases, the overall &ilur
practice employed could be the reason why team size angrocessing efficiency tends to be higher in closed source
dispersion do not show any effect. This development practicdevelopment than in open source development, provided
might also ensure that the development team has enougdhat service level agreements and process governance are
time to process failures, regardless of the developmerih place. However, some individual open source projects

V. DISCUSSION
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Figure 3. Failure processing efficiency

do indeed attain failure processing efficiencies comparabl VI. THREATS TOVALIDITY

to those of closed source projects. Well-established open c lidity: h llecti ¢ q

source projects are known for their large and very active onstruct Validity: For t e co ection ot our ata, we
community, which is helpful for fast failure processing.erh relied on automated production-level quality tools, aslwel
results of studies focusing on single cases thus highlymtpe as on a strict selection process. We further excluded those

on the particular releases/projects chosen. For instanc&?‘cmrS from our study for which we could not guarantee

Raymond [20] focuses on well-established large open sourc€liable measurement. Therefore, we do not think that our

development projects, such as Linux or Gce, whereas Ylﬁiata has been subject to any large measurement errors.
and Chen [13] and our study consider smaller and/or less

established ones. Internal Validity: Since our regression diagnostics

showed no violation of the regression assumptions, we have

In summary, service level agreements and process govereason to believe that the we correctly identified significan
nance can be seen as good tools to guarantee satisfact@gsociations. Furthermore, we derived the factors from
failure processing times. However, if the power of thegeneral work on software engineering performance; we
community can be leveraged processing efficiency may btherefore assume that the conclusions drawn are valid.
increased even further. In addition, it seems that the riailu
processing efficiency is not influenced as strongly by team External Validity: Software development processes and
factors as one might expect. Besides team factors, it can h@ojects do vary across research settings. It must theréfr
assumed that failure-related factors (such as severithef t assumed that our results are only valid in research settings
failure’s consequences and clarity of the failure desimipt comparable to ours. For instance, they probably cannot be
and the extent of tool support are crucial for the failuretransferred to embedded software development. However,
processing efficiency attained; see Crowston and Scozzi [Qur study might indicate important general principles and
and Gokhale and Mullen [8]. associations.
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VIl. CONCLUSIONS

In this study, we investigated the influence of team factors
on failure processing efficiency. Since open source devel-
opment has recently gained significance, we conducted ouf7]
study in two research settings: at a large software vendor,
and at SourceForge.net. We thus contribute to the empirical
body of knowledge on closed and open source software
development. Prior studies either focused on single reteas 8]
or on closed or open source software development. As far
as we know, this is one of the first studies investigating
team factors and failure processing efficiency in closed and
open source software development, comparing their failure[ ]
processing efficiency, and relying on a rather large sample
size and on large releases instead of small projects.

Our results indicate that appropriate development prackl0]
tices can prevent the negative effects of distributed adgprel
ment on the failure processing efficiency. Our study further
suggests that the level of team experience affects faiIurgll]
processing efficiency. After processing many failure régor
team members know who is responsible for what part of the
coding, and they are also able to solve the problems more
quickly. Software managers should thus support learning irglz]
their organization to improve processing efficiency. More-
over, if service level agreements and process governagce ar
in place, closed source development teams seem to shdW3]
consistent failure processing efficiencies. However, well
established open source development projects can achieve
comparable results.

Further research should especially be devoted to distribu{14]
ed development and the concepts of team experience and
learning. Since recent studies have suggested that the ad-
verse effects of distributed development can be avoided b}’lS]
adequate development practices, more research is needed to
understand what aspects of such practices are of importance
As team experience has been shown to have a significant
positive association with failure processing efficiency in
closed source projects, it would be interesting to investig
how learning takes place in software development in genera

(6]

[16]
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