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Abstract. As modern society becomes more and more dependent on
computers and computer networks, vulnerability and downtime of these
systems will significantly impact daily life from both social and economic
point of view. Words like reliability and downtime are frequently heard
on radio and television and read in newspapers and magazines. Thus
reliability and availability have become popular terms. However, even
professionals are in the danger of misunderstanding these basic concepts.
Such misunderstandings can hinder advances in designing and deploying
high-availability and high-reliability systems.

This paper delves into ten fallacious yet popular notions in availability
and reliability. While the discussions on the first five fallacies clarify
some misconceptions among reliability engineers working on modeling
and analysis, the remaining five fallacies provide important insights to
system engineers and companies focusing on system level integration.

1 Prologue

It is hard to discuss the reliability and availability concepts without first consid-
ering the lifetime of components and systems. We will mainly refer to systems
in the explanation to follow but the same concepts will equally apply to com-
ponents or units. In this section we review basic definitions that baseline our
presentation to follow.

1.1 Basic Probability Theory Definitions

The lifetime or time to failure of a system can usually be represented by a random
variable due to the intrinsic probabilistic nature of events that lead to system
malfunction. Let the random variable X represent the lifetime or time to failure
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of a system. The continuous random variable X can be characterized by the (cu-
mulative) distribution function (CDF) F(t), the (probability) density function
(PDF) f(t), or the hazard (rate) function h(t), also known as the instantaneous
failure rate. The CDF represents the probability that the system will fail before
a given time ¢, i.e.,

F(t) =Pr(X <t). (1)
The PDF describes the rate of change of the CDF, i.e.,
dF(t) . Prt< X <t+ Ap)
=—72 =] .
J) = == = Jimg At @

Hence, f(t)At is the limiting (unconditional) probability that a system will fail
in the interval (¢,t + At]. However, if we have observed the system functioning
up to some time t, we expect the conditional probability in the interval to be
different from f(¢)At. This leads us to the notion of the instantaneous failure
rate, or the hazard rate function,

Prt < X <t4+ At| X > 1) f(@t)

h(t) = Jim, At TI1-F@) ®)

Thus, h(t)At represents the conditional probability that a system surviving to
age t will fail in the interval (¢, ¢+ At]. Applied to a large population of systems,
this conditional probability is the proportion of the survivors at time ¢ that die
during the immediately following small interval of time At.

The three functions F(t), f(¢) and h(t) are interrelated as shown in Table [Il

Table 1. Interrelationships between functions related to the lifetime distribution

f(t) dF(t) h(t)€7 fot h(T)dT

dt

JEf(rydr| F@t) [1—e Johoir

f(t) dF(t)/dt
T=7nar | 1-F( h(t)

Any of these three functions can uniquely describe the lifetime distribution.
For instance, if the time to failure of a system follows an exponential distribution
with parameter A then

F(t)y=1—¢, (4)

fl)= 5 (1= ) =2, )
e M

h(t) =\ (6)
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for ¢t > 0. Observe that the hazard rate function h(t) shows that the exponential
lifetime distribution is characterized by the age-independent failure rate \. As
a matter of fact, the exponential distribution is the only continuous probability
distribution having a hazard function that does not change over time.

Therefore, whenever people refer to a lifetime distribution with constant fail-
ure rate, they are implicitly establishing the exponential distribution for the
system lifetime.

1.2 Reliability Definitions

Recommendation E.800 of the International Telecommunications Union (ITU-
T) defines reliability as the “ability of an item to perform a required function
under given conditions for a given time interval.” Therefore, for any time interval
(z,z + t] reliability R(t | z) is the probability that the system does not fail in
this interval, assuming that it is working at time z. Of specific interest are
the intervals starting at time z = 0; reliability R(t) := R(¢ | 0) denotes the
probability that the system continues to function until time ¢. If the random
variable X represents the time to system failure as before, then

R(t) =Pr(X >t)=1— F(t), (7)

where F'(t) is the system lifetime CDF.

Closely related to the reliability R(t) is the definition of mean time to failure
(MTTF). System MTTF is the expected time that a system will operate before
the first failure occurs; i.e., on the average, a system will operate for MTTF
hours and then encounter its first failure. The average of the system’s lifetime
distribution F[X] is

BIX] :/Oootf(t)dt:/ooo R(t)dt, (8)

provided this integral is finite. If the right-hand side is not absolutely convergent,
then E[X] does not exist. Therefore, system MTTF can be computed by first
determining its corresponding reliability function R(¢) and then applying (&).
For example, if the system lifetime is exponentially distributed with failure rate
A then

Rty=1-(1—e M) =™ (9)

and - )
MTTF = / e Mdt = —. (10)
O )\

1.3 Availability Definitions

Availability is closely related to reliability, and is defined in ITU-T Recommen-
dation E.800 as the “ability of an item to be in a state to perform a required
function at a given instant of time or at any instant of time within a given time
interval, assuming that the external resources, if required, are provided.”
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An important difference between reliability and availability is that reliability
refers to failure-free operation of the system during an interval, while availability
refers to failure-free operation of the system at a given instant of time.

Like in the case of reliability, we can restate the availability definition with
the assistance of random variables. Let Y (¢) = 1 if the system is operating at
time ¢, and 0 otherwise. The most straightforward measure of system availability
is the instantaneous availability A(t), which is the probability that the system is
operating correctly and is available to perform its functions at a specified time
t, i.e.,

A(t) =Pr(Y(t) = 1) = E[Y(?)]. (11)
The instantaneous availability is always greater than or equal to the reliability;
and in the absence of repairs or replacements, the instantaneous availability A(t)
is simply equal to the reliability R(t) of the system.

Given A(t) we can define the (steady-state) availability A of the system as

A= lim A(1). (12)

The steady-state availability, or simply availability, represents the long-term
probability that the system is available. It can be shown that the steady-state
availability is given by
MTTF
A= , (13)
MTTF + MTTR

where the system mean time to repair (MTTR) is the average time required
to repair system failures, including any time required to detect that there is a
failure, to repair it, and to place the system back into an operational state; i.e.,
once the failure has occurred, the system will then require MTTR hours on the
average to restore operation. It is known that the limiting availability depends
only on the mean time to failure and the mean time to repair, and not on the
nature of the distributions of failure times and repair times. There is an implied
assumption in this model that repairs can always be performed which will restore
the system to its best condition (“as good as new”).

If the system lifetime is exponential with failure rate A, and the time-to-repair
distribution of the system is exponential with (repair) rate u, then ([I3) can be
rewritten as

- _*

oA+
Another concept of interest is the interval (or average) availability A;(t) of the
system given by

(14)

A(t) = % /O A(r)dr. (15)

The interval availability A;(¢) is the expected proportion of time the system is
operational during the period (0,¢]. A property that can easily be verified if we
represent the total amount of system uptime during (0, ¢] by the random variable
U(t) is the following one:

A(t) = %/0 Bl (1)]dr = %E[U(t)]. (16)
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The limiting average availability A; is the expected fraction of time that the
system is operating:
A[ = tlim A[(t). (17)
— 0

If the limit exists, then the steady-state and the limiting average availabilities
are the same [12]; i.e.,

A= lim = [ A(r)dr = A (18)

t—o0 0

2 Fallacies

2.1 “Fault Tolerance Is an Availability Feature and Not a
Reliability Feature”

This fallacy comes from the misunderstanding of the reliability definition. The
statement “the system continues to function throughout the interval (0,¢]” does
not imply the absence of internal system faults or error conditions during the
interval (0, ¢]. Failure and recovery at component level is allowed as long as the
system continues to function throughout the interval (0,¢]. A simple example is
Redundant Array of Independent (or Inexpensive) Disks (RAID) [3]. For RAID
1-5, it stores redundant data in different places on multiple hard disks. By placing
data on multiple disks, I/O operations can overlap in a balanced way, improving
performance and also increasing fault-tolerance.

Figure [l is the state-transition diagram of a continuous-time Markov chain
(CTMC) modeling the failure/repair behavior of a RAID 5 system. State 0
represents the state that all the N disks in the parity group are working, state
1 represents the failure of one disk. The parity group fails (data is lost) when
there are double disk failures. The failure rate and repair rate for a disk are A
and pu, respectively.

NA (N-D)L
u
Fig. 1. CTMC for RAID 5 with N disks

Solving the CTMC model, it can be shown that the system reliability in the
interval (0, ¢] is given by [4]

N(N —1 )\2 —aat —at
R(t) = YN =D ( e ) (19)
] — Q2 (e%) aq
where
2N — 1)\ + /A2 4+ 202N — 1)\ 2
%02:( A+ £ /A2 +2( i+ p* (20)

2
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From these expressions, the mean time to reach the absorbing state 2 (i.e., the
system MTTF) is derived as

2N -1 W

MTTF = .
N(N-—DA NN —1)»2

(21)

If the MTTF of a disk is A= = 20 years [5], and the MTTR is x~! = 20 hours,
using RAID 5 to add parity in a rotating way, the MTTF of the parity group
with N = 6 disks will be 5,847.333 years.

In a system without repair (i.e., 4 = 0) the time to failure follows a two-
stage hypoexponential distribution with transition rates NA and (N — 1)A. The
reliability function is then

_ 2 —(N=1)X\t — Nt
R() N(N —-1)A (e e )

TNMA-(N—1A\(N—Dx N
= Ne WN=DX _ (N — 1) NAL (22)
and the MTTF amounts to
1 1 1
MTTF = — — _ 2N (23)

NAx (N—DXx NN -DX

For our RAID 5 example with parameter values given above follows a system
MTTF of about 7.333 years, which is considerably less than the system MTTF
in the presence of repair, and it is even less than the MTTF of a single disk;
this stresses the importance of combining redundancy with effective and efficient
repair.

However, we have seen that in the presence of adequate repair fault tolerance
can improve system reliability. It is thus not only an availability feature, but
also a reliability feature.

2.2 “Availability Is a Fraction While Reliability Is Statistical”

This statement seems to imply that availability is a deterministic concept, while
reliability is a random quantity. In fact, as can be seen from (7)), for a given
time ¢ reliability R(¢) is a fixed probability that depends on the distribution
of the time to failure. Of course, the parameters of this distribution - or even
the type of distribution - may be unknown; then the reliability needs to be
estimated from measured data. For example, assume that we observe m new
(or “as good as new”) copies of the same system throughout the time interval
(0,¢]. If 4 of these copies do not fail during the observation period, then we
can give a point estimate of R(t) as the fraction z;/m. Note that the number
of non-failing copies X; is random; therefore, the estimator R(t) = X,;/m is also
a random variable. As a consequence, the point estimate x;/m can be far from
the true reliability R(¢); instead of merely calculating such a point estimate, it
is therefore advisable to derive a confidence interval. Based on the fact that X;



Ten Fallacies of Availability and Reliability Analysis 193

follows a binomial distribution with size m and success probability R(t), it can

be shown [6] that
_ 1 -1
xtf2mt,2(m—zt+1);a

is the realized upper one-sided 100(1 — a)% confidence interval for R(t), where
the expression fog, 2(m—a,41);a denotes the (lower) 100a%-quantile of the F-
distribution with 2z; numerator degrees of freedom and 2(m — x; + 1) denom-
inator degrees of freedom. This means that if we repeat the experiment (of
observing the number of non-failing systems among a set of m until time ¢) very
often, then about 100(1 — «)% of the confidence intervals constructed based on
the respective measured values of z; will contain the true but unknown reliability
R(t). Note that the estimator and the confidence interval given above are valid
regardless of the distribution of the time to failure. As an example, assume that
we observe 100 new copies of a system for 10 hours each. If one of them fails,
then we estimate the reliability in the time interval (0; 10 hr] to be 0.99, while
the realized upper one-sided 95% confidence interval is given by [0.9534; 1].
Similarly, the steady-state availability A can be estimated as follows. We can
for example measure n consecutive times to failure (Y1,...,Y,) and times to
repair (Z1,..., Z,) of a system in steady-state. All times to failure and times
to repair, as well as the total up-time U, = > -, Y; and the total downtime
D, = Z?:l Z; are random variables. Based on the values u,, and d,, actually
observed, an obvious choice for a point estimate of steady-state availability is
A = u,/(un + dy). Again, it is possible to derive a confidence interval. If all
Y; and Z; are exponentially distributed with rate A and u, respectively, then
2AU,/(2uD,,) follows an F-distribution with 2n numerator degrees of freedom
and 2n denominator degrees of freedom. Therefore, the realized upper one-sided
100(1 — @)% confidence interval for steady-state availability A is given by [4]

d -1
14+ —— 1. 25
( uann,2n;a) ‘| ( )

For example, if we have 10 samples of failures and repairs, and the total up time
and total down time are 9990 hours and 10 hours, respectively, then the point
estimate of availability is 0.999. Assuming that both the time to failure and the
time to repair follow exponential distributions, the realized upper one-sided 95%
confidence interval is [0.9979; 1].

This availability inference process is not always feasible since the system
MTTF of commercial systems such as the ones supporting most computing and
communications systems is of the order of months to years. So, a more practical
approach aims at estimating the interval availability A;(t) for the interval (0, ¢]
with fixed length ¢ (e.g., a week or a month) instead. One possible approach
is to observe m statistically identical new (or “as good as new”) copies of the
system during the time interval (0, ¢]. For each copy ¢ = 1, ..., m, the total down-
time d;(t) (realization of the random variable D;(t)) in the observation interval
is recorded. Alternatively, we could observe the same system for m periods of
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fixed duration ¢, provided that it is as good as new at the beginning of each of
these periods. The random variables D;(t) would then represent the downtime
of the system in the i*" observation period, while d;(t) is the actual downtime
experienced in this period.

Since the individual downtimes D;(t) are identically distributed random vari-
ables, the sample mean

D(t) = > Dilt) (26)

has an expected value that is equal to the true but unknown expected downtime
in the interval (0, t]. We can therefore use the average of the observed downtimes
to compute a point estimate of the system interval availability A;(t):

Ar(t) = t— Zt:n:l di(t) _ L %

(27)

If the individual downtimes D;(t) are independent, then the Central Limit The-
orem [4] guarantees that for large sample sizes m the sample mean D(t), (20),
approximately follows a normal distribution. This fact can be used for deriving
an approximate confidence interval to the interval availability estimate.

As the observation period ¢ increases, the interval availability estimated using
[27) will eventually converge to the true steady-state availability A of the system,
ie.,

lim A;(t) = A. (28)
t—o0
Simulation experiments in [7] show that it is possible to produce a steady-state
availability estimate with an efficient confidence interval based on a temporal
sequence of interval availability estimates. This technique does not depend on
the nature of the failure and repair time distributions.

All this shows the similarities between reliability and availability from a sto-
chastic point of view: Both reliability and availability are fixed but unknown
values; they can be estimated by fractions; the estimators are random variables;
and based on the distributions of these random variables, we can come up with
expressions for constructing confidence intervals.

2.3 “The Term ‘Software Reliability Growth’ Is Unfortunate:
Reliability Is Always a Non-increasing Function of Time”

This fallacy is caused by the fact that reliability R(¢ | z), the probability of no
failure in the time interval (z, z + t], can be considered as a function of interval
length ¢, or as a function of interval start time z.

The latter aspect is often forgotten due to the importance of the reliability
function R(t) := R(t¢ | 0) referring to the reliability in the interval (0,¢]. By
integrating both sides of [B]) we get

G [0 [foRGer
/0 h(T)dT—/O lfF(T)dT = /0 R0) dr; (29)
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using the boundary condition R(0) = 1, this yields [4]
R(t) = e~ Jo h(ndr, (30)

Since the hazard function h(t) is larger than or equal to zero for all ¢t > 0, R(t)
is always a non-increasing function of ¢. This result is reasonable: If the time
interval examined is extended, then the probability of experiencing a failure
may be higher, but it cannot be lower.

However, if the interval length ¢ considered is set to a fixed value, say t,
while the interval start time z is allowed to vary, then reliability R(¢o | 2) can be
a decreasing, constant, or increasing function of z. Software reliability growth
models describe how the failure generating process evolves as testing and de-
bugging proceed. Almost all of them assume that R(to | z) will eventually be a
non-decreasing function of z; hence the term “software reliability growth.”

For example, in the important class of non-homogeneous Poisson process mod-
els, the instantaneous failure rate of the software is a mere function of time and
does not depend on the number of faults discovered so far, etc. It can be shown
that according to these models the reliability R(t | z) is given by [§]

R(t|z) = e J2 hn)dr, (31)

in this context, the function h(t) is often called “program hazard rate.” Obvi-
ously, @BI)) includes (B0) as the special case z = 0. Regardless of the value of z,
R(t | z) is always a non-increasing function of ¢, starting out at R(0 | z) = 1.
However, there will eventually be software reliability growth in the sense de-
scribed above if and only if the instantaneous failure rate is eventually a non-
increasing function of time. Figure[2illustrates these aspects based on a so-called
S-shaped software reliability growth model, featuring an instantaneous failure
rate that is first increasing (e.g., due to learning effects on part of the testers)
and then decreasing (because the software quality improves). The strictly de-
creasing function R(¢ | 0) is depicted in the left diagram. For the arbitrarily
chosen interval length ¢g, the right diagram shows that R(ty | z) as a function
of z first decreases and then increases.

Thus, the term “software reliability growth” is correct, as it refers to the fact
that the probability of no failure occurrence in a time interval of fixed length
tends to be higher if the interval start time is increased.

2.4 “MTTF Is the Whole Story about Reliability”

This misconception is probably due to the fact that simple system reliability and
availability (R&A) models often assume that the time to failure of individual
components follows an exponential distribution. As we have seen in Section [[.1],
the only parameter of this distribution is the constant failure rate A, which
according to ([I0Q) is the reciprocal value of the MTTF. Therefore, if we know
that the time to failure is exponentially distributed, then this piece of information
plus the MTTF indeed completely describe the distribution of the time to failure
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R (t10) as a function of t R (ty | z) as a function of z

R (1, 0)
R (1, 0)
|

t z

Fig. 2. Reliability R(t¢ | z) as functions of ¢ and z

and hence the reliability function R(t). However, it needs to be stressed that the
distribution of the time to failure is never fully specified by its expected value,
the MTTF, alone; we always need at least additional information about the
type of distribution. Unfortunately, the exponential distribution assumption is
sometimes not stated explicitly.

Even if the time to failure is assumed to follow a more complex distribution,
the MTTF can suffice as an additional piece of information. For example, a
two-stage Erlang distribution [4] features an increasing failure rate, but like the
exponential distribution it only has one parameter, A. From a given MTTF, the
value of this parameter can be derived as \ = ﬁ

Note that for distributions with more than one parameter, information on the
type of distribution and the MTTF will not be enough for completely specifying
the distribution - information about additional moments of the distribution (or
about its additional parameters) will be needed. For example, if the time to
failure is known to follow a k-stage Erlang distribution (where k is unknown),
then in addition to the MTTF we would require further information, like the

variance of the time-to-failure distribution Var. TTF, in order to derive the two

model parameters A = VlfrTTT?F and k = MTTF -\ = \%}E?;

The fact that the MTTF by itself does not completely specify the time-to-
failure distribution also means that decisions based on the MTTF alone can
be wrong. As an illustration, consider the analysis of triple modular redundant
(TMR) systems. The TMR technique is widely adopted in the design of high-
reliability systems. Since two of the three components present in a TMR system
need to function properly for the system to work, the reliability of such a system
is [4]

R(t) = 3R%(t) — 2R3 (1), (32)

where R, (t) represents the reliability of any of the three statistically identical
components. If the time to failure of each component follows an exponential
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distribution with reliability function given by (@), then we get
R(t) = 3e™ — 2¢7, (33)

It can be shown that R(t) > R,(t) for t < top = In(2)/A. Therefore, the TMR
type of redundancy clearly improves reliability for a mission time that is shorter
than ty. However, the MTTF of the TMR, system,
% At Y 3 2 5
MTTF—/O e~ dt /0 2e dt—2)\ T (34)

is smaller than 1/, the component MTTF. Based on the MTTF alone, a system
designer would always favor the single component over the TMR system; as we
have seen, this decision is wrong if the mission time is shorter than ¢g.

Therefore, MTTF is not the whole story about reliability. It does not suffice
to fully specify the time-to-failure distribution; decisions based on the MTTF
alone can thus be wrong.

2.5 “The Presence of Non-exponential Lifetime or Time-to-Repair
Distributions Precludes Analytical Solution of State-Space
Based R&A Models”

One common misconception is that analytic solutions of state-space based R&A
models are only feasible if all modeled distributions are exponential or geometric
in nature; if that is not the case, simulation modeling is the only viable alterna-
tive. This assertion could not be further from the truth given the rich theory of
non-Markovian modeling.

Markov models have often been used for software and hardware performance
and dependability assessment. Reasons for the popularity of Markov models
include the ability to capture various dependencies, the equal ease with which
steady-state, transient, and cumulative transient measures can be computed,
and the extension to Markov reward models useful in performability analysis
[9]. For example, Markov modeling is quite useful when modeling systems with
dependent failure and repair modes, as well as when components behave in a
statistically independent manner. Furthermore, it can handle the modeling of
multi-state devices and common-cause failures without any conceptual difficulty.

Markov modeling allows the solution of stochastic problems enjoying the prop-
erty: the probability of any particular future behavior of the process, when its
current state is known exactly, is not altered by additional knowledge concern-
ing its past behavior. For a homogeneous Markov process, the past history of
the process is completely summarized in the current state. Otherwise, the exact
characterization of the present state needs the associated time information, and
the process is said to be non-homogeneous. Non-homogeneity extends the ap-
plicability of Markov chains by allowing time-dependent rates or probabilities to
be associated to the models. For instance, in case of a non-homogeneous CTMC,
the infinitesimal generator matrix Q(¢) = [gi;(¢)] is a function of time. This im-
plies that the transition rates g;;(¢) and ¢;i(t) = — >, ; 4i; (¢) are also functions
of t.
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A wide range of real dependability and performance modeling problems fall
in the class of Markov models (both homogeneous and non-homogeneous). How-
ever, some important aspects of system behavior in stochastic models cannot
be easily captured through a Markov model. The common characteristic these
problems share is that the Markov property is not valid (if valid at all) at all
time instants. This category of problems is jointly referred to as non-Markovian
models and include, for instance, modeling using phase-type expansions, sup-
plementary variables, semi-Markov processes (SMPs), and Markov regenerative
processes (MRGPs). For a recent survey, see [10].

Thus, state-space based R&A models can be solved analytically, even if life-
time or time-to-repair distributions are non-exponential.

2.6 “Availability Will Always Be Increased with More Redundancy”

In a perfect world, availability increases with the degree of redundancy. However,
if coverage ratio and reconfiguration delay are considered, availability does not
necessarily increase with redundancy [11].

Assume there are n processors in a system and that at least one of them is
needed for the system being up. Each processor fails at rate A and is repaired
at rate u. The coverage probability (i.e., the probability that the failure of one
processor can be detected and the system can be reconfigured successfully) is c.
The average reconfiguration delay after a covered failure is 1/6, and the average
reboot time after an uncovered failure is 1/5. In the CTMC model in Fig. Bl
state ¢ means there are ¢ processors working, state D; stands for the case that
there are ¢ processors working, the failure of a processor has been detected and
the system is under reconfiguration, while state B; means there are i processors
working, the failure of a processor is undetected and the system is undergoing a
reboot. The system is only available in states 1,2,...,n.

According to the numerical results in Fig. [l system availability is maximized
when there are 2 processors. Therefore, availability will not always increase with
more redundancy, and the coverage probability and reconfiguration delay play
important roles. To realize redundancy benefits, coverage must be near perfect
and reconfiguration delay must be very small.

2.7 “Using Low-Cost Components Can Always Build Highly
Available Systems”

In Section 2.6] we argued that the coverage probability plays an important role
for availability. From industry experience, low-cost components are usually de-
signed with relatively poor fault management because component vendors are
reluctant to increase expense to improve the quality of products. Thus, there
are many cases in which low-cost components are accompanied with lower cov-
erage probability, lower fault-detection probability, longer fault-detection time
and larger no-trouble-found ratio (i.e., one cannot find where the problem is
when the system fails). From Fig. @l we can conjecture that we might not be
able to build a highly-available system if the coverage probability is low and/or
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u
(n=DM(1-)
%

Fig. 3. CTMC model for a multi-processor system
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(a) Downtime for various mean delays (b) Downtime for various coverage prob-
abilities

Fig. 4. System downtime as a function of the number of processors used

the reconfiguration delay is long, which are the attributes that usually come
with low-cost components. So before choosing a low-cost component, make sure
to assess its reliability and fault coverage probability and ensure that they meet
the availability goal at the system level.

2.8 “A Ten-Times Decrease in MTTR Is Just as Valuable as a
Ten-Times Increase in MTTF”

Equation ([I3) suggests that a ten-times decrease in MTTR is just as valuable as
a ten-times increase in MTTF. That is correct from system availability point of
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Fig.5. MRGP Model for single-user-single-host Web browsing

view. However, for most of the applications running on the Internet, a decrease
in MTTR is sometimes more valuable than the corresponding increase in MTTF,
due to the automatic retry mechanism implemented at various layers of the In-
ternet protocols which masks some short outages and makes them imperceptible
[12].

Figure[lis an MRGP model for single-user-single-host Web browsing. The cir-
cles in this figure represent the states of our model, and the arcs represent state
transitions. Each state is denoted by a 2-tuple (s, u), where s is the state of the
platform and w is the user status. s = {U, D} includes the situations that the un-
derlying system is up and down, respectively, and u = {T', A, F'} contains the user
status of thinking, active, and seeing a failure, respectively. Our model’s state
space is the Cartesian product of s and w, {(U,T), (D, T), (U, A), (D, A), (U, F),
(D, F)}.

The system fails at rate A (from (U, u) to (D,u)), and is repaired at rate p
(from (D,u) to (U,u)). After the user has been active for a certain amount of
time, which has a CDF of F'(.), she enters thinking state (from (s, A) to (s,T)),
and comes back to active (from (s, T') to (s, A)) after some time (with CDF G(.)).
If she is active and the network is down (state (D, A)), the browser retries after
some time that follows a distribution with CDF T'(.). The repair of the system
in state (D, A) will be detected immediately by the automatic HTTP recovery
mechanism. If the retry fails, the user sees a failure (state (s, F')). The user re-
attempts to connect to the Web host, which is represented by transition with
distribution R(.). Note that transitions F(.), G(.), T(.), and R(.) have general
distributions (solid thick arcs in Fig. [l); hence the model described above is not
a CTMC, nor is it an SMP because of the existence of local behaviors, which
are known as state changes between two consecutive regenerative points. For
example, if the failure transition from (U, A) to (D, A) occurs, the user active
transition F(.) is not present in state (D, A). This exponential transition is
known as competitive exponential transition (represented by solid thin arcs), and
its firing marks a regenerative point. On the other hand, the transitions of the
server going up and down in states (U, T') and (D, T') do not affect (add, remove
or reset the general transitions) the user thinking process which is generally
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distributed. They are called concurrent exponential transitions (represented by
dashed thin arcs), and their occurrences are just local behaviors.

Following the methodology in [12], and using the assumptions on parameters
and distributions [13], we can get the numerical results depicted in Fig. Bl For
comparison purpose, we also constructed and solved the corresponding CTMC
model, i.e., we replaced all the general distributions with exponential distribu-
tions with the same means.

We denoted the user-perceived service availability of the CTMC model by
Ay, System unavailability was set to a constant 0.007, while the failure rate A
and repair rate p varied accordingly. If we incorporate both the failure recovery
behaviors of the service-supporting infrastructure and the online user behaviors
and evaluate the dependency of the user-perceived unavailability on parameters
including the service platform failure rate/repair rate, user retry rate, and user
switching rate, we will find the user-perceived unavailability very different from
the system unavailability.

For Web applications, the user-perceived availability is more sensitive to
the platform repair rate; i.e., for two systems with same availability, the one
with faster recovery is better than the one with higher reliability from an end
user’s perspective. We also found that the CTMC model overestimates the user-
perceived unavailability by a significant percentage.

2.9 “Improving Component MTTR Is the Key to Improve System
Availability”

This fallacy results from a common misunderstanding of the steady-state avail-
ability formula (I3)): If we maintain the MTTF invariant (e.g., by not investing
in more reliable components) then we can still improve system availability by re-
ducing component MTTR, right? Not necessarily, because the MTTF and MTTR
parameters in the system availability formulas are related to system properties,
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Fig. 7. CTMC model of a two-component parallel redundant system with fault recovery
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not component ones. The system MTTR parameter in a fault-tolerant system, for
instance, will also be a function of the quality of its fault management mechanism.

Consider for instance the fact that any given CTMC model can be reduced
to an equivalent two-state model for the sole purpose of conducting steady-state
analysis using the aggregation technique introduced in [14]. With this procedure
we are collapsing all operational states into a single state, and all failed states
into a single failure state. Failures in the equivalent model happen with rate
Aeq and are repaired with rate pi.q. Therefore, we can define system MTTF or
MTTF,, as 1/A., and system MTTR or MTTR,, as 1/, in reference to the
trivial solution of a two-state availability model provided by (I3). The problem
is that these equivalent rates are numerical artifacts with complex formulae that
most of the time cannot be physically interpreted (e.g., there is no simple relation
mapping a system MTTR to component MTTR).

For example, consider a two-component parallel redundant system with a
single shared-repair facility. The availability model is shown in Fig. [ In the
state transition diagram, state 1D represents the recovery behavior after the
first fault in the system (i.e., the first component failure). All other states are
labeled by the number of failed components. States 1D and 2 are assumed to be
the system failure states in this example. The component failure and repair rates
are A and u, respectively. Once the first system fault is triggered, the system
will recover with rate §. The time the CTMC stays in state 1D represents the
combined time the system’s fault manager needs to react to the first system fault.
A second fault during this sojourn time in state 1D leads the system directly to
the system failure represented by state 2. This event happens with rate .

The steady-state solution of the CTMC model in Fig.[fresults in the following
state probabilities:

o (N +6) o N (35)
T AN+ pu+O)E’ T XA p+0)E
(A +0) _ 1
TNt proE T E (36)
with
2 2
Boqg A+ 0 P (A +6) (37)

AMA+p+6)  AMA+p+6)  2X2A+p+6)’
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Equivalent system failure and repair rates can be determined applying the ag-
gregation techniques introduced in [I4]. For the system in Fig. [{l we obtain

2\ A
Aeg = y (38)
o+m
Omip + pmo
= ——— 12 39
Heq D + 2 ( )

with system availability given by ([4). To better understand the impact of the
equivalent rates on system availability look at the composition of Ay and peq
in B8) and (B9). Take pe, as an example. A typical setting for the parameter
values is: A = 107°, u ~ 107!, and § ~ 102. Then 67 p > pms in the numerator
of (BY). This shows that the recovery rate 6§, not y, is the key to improving fieq;
thus improving system availability.

This example has illustrated a case where a higher system availability can
be reached much more effectively by increasing the system recovery rate rather
than decreasing the component MTTR.

2.10 “High-Availability Systems Should Have No Single
Point-of-Failure”

Single point-of-failure (SPOF) analysis is one of the traditional practices in re-
liability engineering. Naive interpretation of the topology of reliability block
diagrams or other architectural diagrams may lead to the erroneous perception
that the optimal improvement opportunity (without considering costs) in any
high-availability architecture is always the removal of SPOFs. What the analyst
may fail to realize is that the structure of the system is just one of many factors
that determine the importance of a component in a high-availability system.
Other determining factors are for instance the reliability /unreliability (or avail-
ability /unavailability) of the system components, the mission time, and target
availability. Besides, the adoption of hierarchical modeling approaches may also
lead to confusion. For instance, subsystems that appear as SPOFs in high-level
diagrams may in fact correspond to highly redundant component structures.

Importance theory, a concept introduced by Birnbaum [15] in 1969, provides
superior criteria than SPOF's alone for objective placement of redundancy. The
reasoning behind the theory is that during the design of a system, the choice
of components and their arrangement may render some components to be more
critical with respect to the functioning of the system than others. The first quan-
titative ranking metrics proposed were the structural importance and Birnbaum
component importance.

The structural importance of a component establishes the probability that
the system shall fail when the component fails, i.e., the component is critical
for system operation. Similar to an SPOF analysis, structural importance allows
us to consider the relative importance of various components when only the
structure of the system is known, but no other information is available.

When we do have additional information, improved measures such as the Birn-
baum component importance provide a better framework to identify improvement
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opportunities to the system. For instance, when we additionally know the individ-
ual reliability of system components, we can compute the Birnbaum component
importance. Semantically, this new metric represents the rate at which the system
reliability improves as the reliability of a particular component improves. Another
way of interpreting the Birnbaum importance metric is the probability that at a
given time the system is in a state in which the component is critical for system op-
eration. The larger the Birnbaum importance measure is, the more important the
component is, in agreement with the intuition that a component that is frequently
critical should be considered important.

To exemplify the distinction of both importance measures, consider the series-
parallel system represented by the reliability block diagram in Fig. |l

L=

Fig. 8. Series-parallel reliability block diagram

The system is operational as long as component ¢; is functioning together with
at least one of the two parallel components. Just based on the block diagram, we
can determine, using the methods in [I6] for instance, that the structural impor-
tance of ¢; is three times larger than those of either ¢, or ¢3. This is an outcome
that agrees with the intuition that series components are more fundamental to
system reliability than parallel components, matching the SPOF reasoning. Now
let us assume that we also know the intrinsic reliability of the system compo-
nents. Suppose that the intrinsic reliability of the series component is 90% for
a given mission time 7', while the reliability of the parallel components are just
30% for the same mission time. Then, one can determine, using also the meth-
ods in [16] for instance, the Birnbaum importance of the components to be 0.51
for ¢, and 0.63 for the other two components. Therefore, the analysis indicates
that components co and c3 should be the target of improvements (contrary to
the results of a SPOF analysis) because at time T there is a 63% probability of
the system being in a state that the functioning of these components is critical.
For a comprehensive survey of other importance measures see [17].

3 Conclusions

Modern society and economy have been posing an increasingly imperative de-
mand on the availability and reliability of computer systems and computer net-
works. The so called “24x7” (24-hours-a-day-and-7-days-a-week) requirement for
these systems presents an unprecedented technical challenge. However, seemingly
well-known concepts like availability and reliability are sometimes misunderstood
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even by professionals; such misunderstandings may eventually hinder advances
in designing and deploying high-availability and high-reliability systems. This
paper introduced ten fallacies existing in availability and reliability analysis and
traced them back to their theoretical flaws. The first five fallacies address mis-
conceptions related to R&A modeling and analysis, while the remaining ones
provide insights for system engineers and companies focusing on system level
integration.
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