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Abstract—The growing complexity of mission-critical space
mission software makes it prone to suffer failures during op-
erations. The success of space missions depends on the ability
of the systems to deal with software failures, or to avoid them
in the first place. In order to develop more effective mitigation
techniques, it is necessary to understand the nature of the failures
and the underlying software faults.

Based on their characteristics, software faults can be classi-
fied into Bohrbugs, non-aging-related Mandelbugs, and aging-
related bugs. Each type of fault requires different kinds of
mitigation techniques. While Bohrbugs are usually easy to fix
during development or testing, this is not the case for non-
aging-related Mandelbugs and aging-related bugs due to their
inherent complexity. Systems need mechanisms like software
restart, software replication or software rejuvenation to deal with
failures caused by these faults during the operational phase.

In a previous study, we classified space mission flight soft-
ware faults into the three above-mentioned categories based on
problems reported during operations. That study concentrated
on the percentages of the faults of each type and the variation of
these percentages within and across different missions. This paper
extends that work by exploring the nature of the times to software
failure due to Bohrbugs and non-aging-related Mandelbugs for
eight JPL/NASA missions. We start by applying trend tests to
the times to failure to check if there is any reliability growth
(or decay) for each type of failure. For those times to failure
sequences with no trend, we fit distributions to the data sets
and carry out goodness-of-fit tests. The results will be used to
guide the development of improved operational failure mitigation
techniques, thereby increasing the reliability of space mission
software.

I. INTRODUCTION

Spacecraft systems make increasing use of better and more

powerful hardware, with reduced mass and energy consump-

tion. This hardware improvement allows deploying more so-

phisticated flight software, which in turn has enabled the

design of more ambitious missions. This naturally leads to the

the development of more complex software with new features

to monitor and control an increasing number of hardware

devices that are needed for the success of such space missions

[1]. However, the growing complexity of flight software makes

it more prone to suffer failures. The ability of the spacecraft

systems to deal with software failures during operation can

determine the success or failure of a mission.

The growing requirements of space missions also necessitate

flight software with the capability to run autonomously, or at

least with minimum human intervention. Planetary spacecraft

need to make decisions autonomously because there is no time

to wait for the round-trip message delay. Moreover, spacecraft

can be isolated from the earth for hours, or even days, and the

volume of data collected has to be preprocessed on-board to

reduce the bandwidth to transfer the data to the earth. For this

reason, autonomous fault protection mechanisms have been

introduced into flight software.

To develop better mitigation techniques for dealing with

software failures during operation, and hence to develop more

reliable space mission software, it is necessary to have a deeper

understanding of the nature of the software failures, and the

underlying software faults.

Software faults, or “bugs”, are the underlying causes of

software failures. Based on their characteristics, they can be

classified into Bohrbugs, non-aging-related Mandelbugs, and

aging-related bugs. In our previous papers we have attempted

to define these terms as precisely as possible [2], [3], [4], [5].

The term Bohrbug (BOH) was coined by Gray [6] in 1985.

It refers to a fault that is easy to isolate and whose mani-

festation is consistent under a well-defined set of conditions,

because its activation and error propagation lack “complexity”

as defined below.

In contrast to Bohrbug, the term Mandelbug refers to a

fault whose behavior seems to be “non-deterministic”. This

means that typically a Mandelbug is difficult to isolate, and

failures caused by it are hard to reproduce. In our definition of

a Mandelbug we trace these characteristics to the complexity

of its activation and/or error propagation. This complexity can

be caused by:

1) a time lag between the fault activation and the occur-

rence of a failure; or

2) the influence of indirect factors, i.e.,

a) interactions of the software application with its

system-internal environment (hardware, operating

system, other applications); or

b) influence of the timing of inputs and operations

(relative to each other, or in terms of the system

runtime or calendar time); or

c) influence of the sequencing of operations; sequenc-

ing is considered influential, if the inputs could

have been run in a different order and if at least

one of the other orders would not have led to a

failure.
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Fig. 1. Software fault/failure mitigation classification tree

Mandelbugs are intrinsically related to software complexity:

The more complex a piece of software, the higher the risk of

its containing a large number of Mandelbugs. In fact, there

are similarities between our Mandelbug definition and the

definition, due to Dörner, of system complexity as “the label

we give to the existence of many interdependent variables

in a given system. The more variables and the greater their

interdependence, the greater that system’s complexity. (...) The

links between the variables oblige us to attend to a great

many features simultaneously, and that, concomitantly, makes

it impossible for us to undertake only one action in a complex

system. (...) A system of variables is ‘interrelated’ if an action

that affects or is meant to affect one part of the system will

also affect other parts of it. Interrelatedness guarantees that an

action aimed at one variable will have side effects and long-

term repercussions.” [7, p. 38]

A sub-type of Mandelbugs is responsible for the software

aging phenomenon [8], i.e., an increasing failure rate or

progressively degrading performance, observed in many kinds

of long-running systems [9], [10], [11], [12], [13]. A so-

called aging-related bug is able to cause this phenomenon

because the rate with which it is activated and/or the rate with

which errors caused by it are propagated into (partial) failures

increases with the total time the system has been running.

Such an increasing error propagation rate is often caused by

the accumulation of internal error states.

Mandelbugs can thus be divided into aging-related bugs

(ARBs) on the one hand and those Mandelbugs that are

not capable of causing software aging, known as non-aging-

related Mandelbugs (NAMs), on the other hand.

The upper portion of Figure 1, adapted from [14], summa-

rizes the relationship between these types of faults.

The importance of classifying faults is not only theoretical.

It has also a practical importance, because every fault type

requires different approaches to deal with it in the development

and testing phase, as well as during operation [4], [14].

Typically, Bohrbugs may easily be isolated and removed

during testing. Design diversity can prevent residual Bohrbugs

in operational software from causing failures, as long as the

different software implementations do not contain Bohrbugs

activated by the same inputs.

For Mandelbugs, which are difficult to remove in the testing

phase, design diversity can help as well during operations.

However, due to the seemingly non-deterministic behavior

of Mandelbugs, it is possible that an operation which pre-

viously failed because of a Mandelbug will work perfectly on

re-execution. Therefore, techniques like software replication

(failover to a standby with an identical software copy), retrying

the operation, restarting the application, or rebooting the

physical system can be effective to deal with Mandelbugs.

In the special case of aging-related bugs, future failures

can be prevented via software rejuvenation approaches [15].

Software rejuvenation is a proactive “maintenance operation”

focused on stopping the system, cleaning up the internal state,

and restarting the system to an initial state.

The lower part of Figure 1 depicts the different mitigation

approaches for each fault type.

Due to the practical importance of the fault type classifica-

tion, in our previous paper [5], we analyzed the problem re-

ports from 18 JPL/NASA space missions, and classified flight

software faults into the three above-mentioned categories. That

study concentrated on the percentages of the unique faults

of each type. The overall percentages of Bohrbugs, non-

aging-related Mandelbugs, and aging-related bugs were 61.4%,

32.1%, and 4.4%, respectively; 2.2% of the faults could not

be classified. We also examined the relationship between the

fault types and the failure severity or effects. Moreover, for the

eight missions with a substantial number of flight software

faults detected, we analyzed the variation of the fault type

percentages within and across different missions.

In this paper, we analyze the problem reports from the same

eight JPL/NASA space missions, but focusing on the time

intervals between failure occurrences, also known as times to

failure (TTFs). Based on the previous failure report classifi-

cation, we conduct two different and complementary analyses

in order to better understand the nature of the times to failure.

First, we examine the existence of a trend in the times to failure

per mission and type of fault. This analysis indicates if the

reliability of the flight software tends to increase or decrease as

more and more failures have occurred. Second, for those times

to failure sequences with no trend detected we try to determine

appropriate models for the underlying distributions, assuming

that the values observed are independently and identically

distributed. This study, and the previous one, will help to

define guidelines for developing more effective fault tolerance

and failure mitigation techniques during operations.

The rest of the paper is organized as follows: Section

II reviews related work analyzing the nature of the times

to (software and hardware) failure. Section III describes the

classification process conducted to classify the problem reports

according to the type of fault which caused the failure.

Section IV analyzes the times to failure sequences in order

to determine if there is any trend. For those data sets with no

trend, we fit distributions, carry out goodness-of-fit tests, and

determine the best distributional model in Section V. Section

VI discusses the results obtained, and concludes the paper.



II. RELATED WORK

Understanding system failures becomes critical to develop

more reliable systems. Although only relatively few empirical

failure data sets are available, there are several papers address-

ing the important task of understanding the nature of failures

from different perspectives.

Several papers have focused on analyzing the causes of

system failures [6], [16], [17], [18], [19], [20], [21], [22],

[23], [24], [25], [26], [27]. In [6], [16], [20], [21], [23], the

main sources of failures considered were human mistakes,

software faults, and hardware faults. These studies concluded

that hardware represents 10–30% of the sources of failures,

human mistakes represent 30–50%, and software represents

the main cause in 20–50% of the failures, depending on

the system and study. Other sources, such as environmental

or natural disasters, were also considered, but their impact

on failures was very small in comparison with the above-

mentioned ones.

Hard disk failures and their causes have received special

attention [18], [26], [27]. These studies were focused on corre-

lating different parameters monitored from the hard disks and

other storage subcomponents with the failures. The primary

goal was to understand the main failure causes.

A few studies related to space mission failures have ad-

dressed the classification of the source of the failures [22],

[24], [25]. Theses studies highlighted that the main sources

of failures in the space missions analyzed were the flight and

ground software. However, they went no further in analyzing

the fault types in the case of software failures. In our previous

work, we tried to fill in this gap, classifying the software

failures from 18 JPL/NASA missions according to the type

of the underlying software fault [5]. The results showed that

Bohrbugs were the main cause of software failures, followed

by non-aging-related Mandelbugs. A small subset of failures

were due to aging-related bugs.

Other papers have been focused on understanding the nature

of the distribution of TTFs [28], [29], [30], [31], [32], [27].

All these studies were focused on fitting distributional models

to the TTFs, and determining the most suitable one. They con-

cluded that the TTFs could be modeled with gamma or Weibull

distributions. However, all studies examined the complete

failure data of the respective systems (or subcomponents),

without separately analyzing the failures from different sources

of failures. Furthermore, the previous analyses assumed that all

the TTFs were independent and identically distributed. To the

best of our knowledge, there is no existent work that carries out

both a reliability growth analysis and a distributional analysis

for separate fault types in multiple systems. This indicates

the relevance of the current paper in order to obtain a better

understanding of the nature of the TTFs in space missions.

III. FAILURE CLASSIFICATION PROCESS

The problem reports from the eight JPL/NASA missions

under analysis were filled in by the operators during mission

operations. Each report contains the description of the incident,

the analysis, verification, and real-time action conducted by the

operators from the ground, and also includes the corrective

action applied (if any) to correct or mitigate the failure and

its consequences. Based on this problem information typed by

the operators, the failure reports were classified according to

the underlying fault which caused the failure.

This section describes how this classification was conducted

in order to show how to connect the aforementioned fault

definitions with real failure reports. Table I presents five

failure reports to exemplify the failure report classification

conducted. The failure reports have been sanitized to guarantee

the anonymity of the data. However, the data relevant for

classifying the underlying fault have been preserved.

The first failure example is caused by a Bohrbug. The cause

of the failure was easily found, isolated, and defined by the

operators. Due to this, the corrective action was based on an

updated version of the flight software.

The second example clearly describes a failure caused by a

non-aging-related Mandelbug. The operators detected the fail-

ure, which was related to interactions of concurrently-running

tasks. The repair developed was not employed, however, the

justification being that it was too late in the mission for the

repair to be useful and that the failure was an uncommon

occurrence. The final action was to use the software as is.

The third example, another example of a non-aging-related

Mandelbug, also presents side effects due to the interaction of

different operations. In this case, the failure depends on the

timing of the operations. The developers were able to devise

a repair, and applied it to the on-board software.

The last two failures were caused by aging-related bugs. In

both cases the failure rate was increasing with time. However,

the corrective action applied was different. In the first case,

the engineers were able to find, isolate, and fix the fault; via

testing they confirmed the effectiveness of the patch. In the

second case, they applied a kind of software rejuvenation,

namely, a periodic proactive clean-up of the stack to avoid

the consequences of the fault. The aging-related bug was not

fixed, but its consequences were avoided.

The classification of the fault type causing each failure

was based on these types of descriptions. The classification

was conducted in parallel by two persons. After that, the

classifications were compared. In the few cases of a mismatch

a detailed analysis was conducted by the two persons to

achieve a consensus.

Based on the above classification, we classified those 481

failure reports of the eight JPL/NASA missions related to flight

software as shown in Table II. Note that in our earlier study

[5] we had removed repeated failure occurrences caused by

the same fault (“duplicates”), because we wished to study

unique software faults. In this work, focusing on the TTFs,

such failures are included. A total of six failures could not

be classified; they were therefore assigned to the “unknown”

(UNK) category.

In order to conduct the reliability growth (or decay) analysis

or to fit any distribution, we need a minimum sample size for

every data set. While the ARB data sets for missions ID1 and

ID2 could be enough to conduct the analysis presented in the



TABLE I
SANITIZED PROBLEM REPORT CLASSIFICATION EXAMPLES

Description of incident Analysis, verification, and/or real-
time action

Final corrective action Underlying
fault

Fault protection powered off the ac-
celerometer and made the TIMER
prime. While the accelerometer was on,
it was reporting a pulse count change
equivalent to an acceleration of 1.3
times the fault protection limit. The test
is performed after a calibration com-
pletes.

Review showed that the nominal ac-
celerometer bias was set to “x” in the
code. The difference between the nom-
inal bias in the flight software and the
actual bias exceeded the fault protection
limit. Ground calibration data showed a
bias slightly greater than “x”, which is
within the tolerance of fault protection
from the observed bias. If the ground-
calibrated bias value had been in the
code, this problem would not have oc-
curred. The nominal bias was patched
and an accelerometer calibration was
repeated. No fault protection activity
was observed.

The flight software will be perma-
nently changed via FSC (Flight Soft-
ware Change) number “Y”. This change
will be made in version “Z” of the flight
software.

BOH

During the attitude control FSW
Checkout (YYYY-DOY/HH:MM:SS),
telemetry channel reporting the Number
of Stars (NoS) incorrectly reported “X”
star counts while the star identification
(SID) activity was suspended. The
NoS channel should always report 0
stars during periods of SID suspend.
This incident only occurred during the
Yth SID Suspend test. This happened
once in flight, and once in a Type Z
run with 200 suspends.

See Corrective Action. Change request W has been created
to document this finding. This hap-
pened once in flight, and once in a
Type Z run with 200 suspends. This
problem occurs when SID SUSPEND
or other SID commands cause SID to
abort. There is a possibility that the
background task will overwrite the NoS
channel after the foreground process
updates it. The change request was re-
jected by the Change Review Board
held on mm-dd-yyyy, “because it is
too late to make FSW changes.” Low
probability of occurrence. NO FIX.

NAM

Analysis revealed {mission 1} FSW
has the potential to miss a sequence
abort event. During the next “X” ms
frame after an engine aborts SQPM
will see the abort state and act accord-
ingly. This issue was discovered during
a {mission 2} program software re-
view. However, if another sequence was
spawned on the sequence engine that
just failed prior to the SQPM check, the
state would no longer show the aborted
state. Reference anomaly report “Y”.

SQPM “polls” VM for sequence aborts
by sampling the engine states at “W”
Hz. When an engine aborts, during the
next “X” ms frame, SQPM sees the
abort state and acts accordingly. How-
ever, if another sequence was spawned
on the engine that just failed prior to
the SQPM check, the aborted state no
longer shows up. A test has demon-
strated the fault, which could be cor-
rected with an SQPM design change
to use a VM mechanism to allow a
callback routine to be invoked any time
a sequence aborts. This will indicate a
sequence error, ensuring that all aborts
are acted upon.

mm-dd-yy: SQPM Abort Patch suc-
cessfully installed on the SC on mm/yy.
Recommend closure of this report.

NAM

The instrument team discovered that
after running for an extended period a
stack pointer in instrument flight soft-
ware becomes confused and as a result
writes a telemetry packet into flight
software memory over code that is used
on boot-up.

The instrument team developed a patch
to correct the problem with instrument
flight software. This patch was uplinked
in real time within instrument com-
manding to flight software during the
“A” and “B” sequences as to eliminate
the risk.

The new version of instrument flight
software fixes the algorithm so that the
stack pointer no longer becomes con-
fused and now correctly writes to the
data buffer. The instrument team con-
firmed via testing and a memory dump
that the memory overwrite malfunction
is no longer occurring.

ARB

Recent testing indicates that data stack
space is not properly deallocated during
virtual machine “force unload”, “block
stop”, and “halt” commands, each of
which causes threads of executing se-
quences to be abnormally terminated.
Rather than recover the data space
memory for further use, the memory is
lost.

Stack space is not properly scavenged
when a virtual machine engine is
stopped abnormally with a “block stop”
or “halt” command. This problem also
affects an engine running code in an-
other engine if the engine storing the
code is a target of a “force unload”
command. Routine “X” now pops off
all calling information from the engine
stack under all termination conditions
so that it does not accumulate in the
abnormal termination case.

ARB



TABLE II
NUMBER OF FAILURES PER FAULT TYPE PER EACH SPACE MISSION

Mission BOH NAM ARB UNK Total failures

ID1 23 12 7 0 42

ID2 85 61 9 1 156

ID3 13 14 0 1 28

ID4 41 25 4 1 71

ID5 19 3 1 0 23

ID6 12 15 0 1 28

ID7 48 8 1 2 59

ID8 47 26 1 0 74

next sections, there are no other missions with a sufficient

number of failures caused by ARBs for comparison. For this

reason, we have decided to remove from our analysis all ARB

data sets. Furthermore, we have removed the NAM data set

related to mission ID5 due to its extremely small sample size.

In contrast, we have retained the NAM data set for mission

ID7; although the number of failures caused by NAMs is also

rather small for this mission, we have several other NAM data

sets to compare with.

Each failure report contains the day on which the incident

occurred, but not the exact hour and minute. When calculating

the TTFs in terms of days, all TTFs computed would thus

necessarily be (non-negative) integer values. Moreover, two

failures filed on the same day would lead to a TTF of zero.

This could cause problems in the subsequent analyses. We

therefore randomly assigned each failure to a specific moment

on its day of occurrence. This randomization should not

greatly influence our results, because it affects the calculated

TTFs on the order of tenths of days, while most TTFs amount

to much more than a day. To make sure that this is indeed the

case, we conducted all analyses based on two different sets

of data generated by randomization. Indeed, there were no

substantial differences, and in the following we thus present

the results obtained for the first randomization carried out.

IV. RELIABILITY TREND ANALYSIS

For missions whose failure history indicates reliability

growth, the application of software reliability models to that

data can help answer questions about the nature of the failure

process, like the following ones: Do the failure processes for

the different types of faults differ? For each type of fault,

does the failure process remain the same from mission to

mission? Answering these questions can help guide decisions

concerning maintenance and constraints that should be placed

on a system’s operational profile during fielded use.

A plot of the running arithmetic averages of the TTFs

indicates that software reliability growth may be occurring

for several of the eight missions we studied. Figure 2 shows

the scaled running arithmetic averages of the TTFs related to

BOHs and NAMs for all eight missions; a number of them ap-

pear to exhibit reliability growth. To accurately identify those

data sets featuring a trend in the TTF sequences, we apply the

two-sided Laplace test [33], testing the null hypothesis of “no

trend”. Per [33], lower and upper asymptotic critical values

TABLE III
LAPLACE TEST STATISTICS

Mission BOH NAM BOH+NAM

ID1 0.382 −1.417 −0.335

ID2 −1.286 −0.136 −3.143

ID3 −2.051 −3.838 −3.817

ID4 −5.280 −1.529 −4.976

ID5 0.081 – 0.646

ID6 −2.267 −2.747 −3.255

ID7 1.609 −0.400 1.309

ID8 −1.444 0.584 −0.893

for the Laplace test statistic indicating a trend at a type I error

level of α are given by the α

2
- and (1 −

α

2
)-quantiles of the

standard normal distribution.

Table III shows the Laplace test statistics calculated for all

23 data sets; values significant at α = 1% are indicated with

bold typeface. The seven data sets exhibiting a trend are:

• ID2 BOH+NAM, ID3 BOH+NAM, ID4 BOH+NAM,

and ID6 BOH+NAM. These data sets combine the

Bohrbugs and non-aging-related Mandelbugs for missions

ID2, ID3, ID4, and ID6, and cover the entire period from

launch to the date on which we collected the failure data

from the JPL/NASA problem reporting system.

• ID4 BOH. This data set consists of the Bohrbugs for

mission ID4 from the entire period from launch to the

time at which we collected the data.

• ID3 NAM and ID6 NAM. These data sets consist of the

NAMs for missions ID3 and ID6 over the same interval

as for the other data sets.

From the fact that all the significant values are negative, we

can further conclude that these TTF sequences are subject to

reliability growth (rather than reliability decline).

The missions have been numbered chronologically; in Table

III, they are arranged from top to bottom in ascending order

of launch date. We see that most of the data sets exhibiting

reliability growth are from the earlier missions: Five of the

seven data sets come from the first four missions, while only

two data sets are related to missions ID5–ID8.

We obtain a deeper understanding of the trend in a

BOH+NAM data set by distinguishing between the underlying

fault types: For missions ID3 and ID6, the trends in the pooled

failure data can be traced back to the failures caused by non-

aging-related Mandelbugs, while for mission ID4 only the

TTFs related to BOHs (but not those related to NAMs) feature

a trend. With respect to mission ID2, the “no trend” hypothesis

can be rejected neither for the BOH nor for the NAM data;

the trend detected in the BOH+NAM data set seems to be an

artifact of not differentiating between the two kinds of faults.

It has been conjectured that with increasing operational

time the percentage of failures caused by Bohrbugs tends to

decrease, whereas the fraction of failures caused by Mandel-

bugs grows [34, p. 28]. While this assumption seems to be

corroborated by the pattern detected for mission ID4, for all

the other missions this is not the case.

We applied eleven software reliability models to the seven



Fig. 2. Scaled running arithmetic averages of the TTFs related to BOHs and NAMs

TABLE IV
SOFTWARE RELIABILITY MODELS APPLIED TO DATA SETS

SMERFSˆ3 SREPT

Geometric (GEO) Musa basic (MB) Goel-Okumoto (GO)

Jelinski-Moranda (JM) Musa logarithmic
(ML)

Weibull (WB)

Littlewood-Verrall
linear (LVL)

NHPP S-shaped (S)

Littlewood-Verrall quadratic (LVQ) Log-logistic (LOG)

data sets exhibiting reliability growth. The models, imple-

mented in SMERFSˆ3 [35] and SREPT [36], are listed in

Table IV. In using SMERFSˆ3, we attempt to apply the model

applicability criteria of prequential likelihood (“accuracy” in

SMERFSˆ3), bias, bias trend, and model noise [37], in addition

to estimating the model parameters and the expected TTFs.

The default settings of SMERFSˆ3 are used in computing

the model applicability criteria. For the models implemented

in SREPT, we obtain parameter estimates for the models,

from which the expected TTFs and the models’ mean value

functions are computed besides values for the model bias

applicability criterion. However, we were not able to compute

the applicability criteria for many of the data sets. Because of

this, and since the model performance measures for SREPT

and SMERFSˆ3 are different, we had to identify a set of

performance measures that can be computed externally to the

tools. In addition to the mean square error (MSE), we used

the mean absolute scaled error (MASE) and mean absolute

percentage error (MAPE) to compare the performance of the

models with one another [38].

For each data set, we rank the models that have run suc-

cessfully according to their MSE, MASE, and MAPE values.

We then compute a figure of merit for the model by finding

the median of those three ranks. The model having the best

performance for a given data set is the one having the lowest

median rank. Table V provides an example. The first three

columns show the raw values of MSE, MASE, and MAPE

for the data set ID4 BOH+NAM across all models. The next

three columns show the rank of each model within that data

set, and the last column shows the median of the individual

ranks. That median is then used as our figure of merit.

Table VI lists these median ranks; Table VII shows the

models attaining median rank 1, 2, and 3 (if any) for each data

set. If parameter estimation was not successful when fitting a

model to a data set this is indicated by a dashed entry in

Table VI; performance of this model was then not evaluated

for the data set. In Table VII, we differentiate between models

assuming an upper bound on the number of failures (indicated

by italics) and those that assume no such bound.

We use the results shown in Tables VI and VII to identify

patterns and trends in model performance, which would trans-

late to patterns and trends in the failure discovery process.



TABLE V
RANKING MODELS USING MULTIPLE CRITERIA

Criteria values Criteria ranks Median

Model MSE MASE MAPE MSE MASE MAPE rank

GEO 6.385 2.095 0.113 2 3 1 2

JM 5.391 1.844 0.160 1 1 3 1

LVL 596.44 54.83 1.515 10 11 10 10

LVQ 46823 23.284 0.821 11 10 9 10

MB 6.627 2.044 0.172 3 2 4 3

ML 7.375 2.251 0.126 6 6 2 6

NHPP 6.955 2.101 0.176 5 4 5 5

GO 6.766 2.101 0.176 4 5 6 5

W 16.080 3.165 0.423 7 7 7 7

S 44.235 4.739 8.962 9 9 11 9

LOG 18.602 3.981 0.564 8 8 8 8

TABLE VI
MODEL PERFORMANCE ACROSS FAILURE HISTORIES - MEDIAN RANKS

BOH+NAM BOH NAM

Model ID2 ID3 ID4 ID6 ID4 ID3 ID6

GEO 3 2 2 7 6 4 7

JM 7 3 1 6 2 – 6

LVL 9 – 10 11 11 4 –

LVQ 10 10 10 10 6 1 –

MB 4 7 3 5 4 6 6

ML 6 1 6 8 9 2 8

NHPP – 6 5 3 1 7 4

GO 2 5 5 4 3 9 4

WB 1 8 7 9 5 10 9

S 5 9 9 2 10 8 2

LOG 8 4 8 1 8 3 1

TABLE VII
BEST PERFORMING MODELS FOR EACH FAILURE DATA SET

Median BOH+NAM BOH NAM

rank ID2 ID3 ID4 ID6 ID4 ID3 ID6

1 WB ML JM LOG NHPP LVQ LOG

2 GO GEO GEO S JM ML S

3 GEO JM MB NHPP GO LOG –

Starting with the set of BOH-related failures for mission ID4,

Table VII indicates that the three best-performing models all

belong to the class of models that assume an upper bound

to the number of failures that will eventually be experienced.

Furthermore, each of those three models has the best possible

rank for the individual performance evaluation criteria (e.g.,

the highest-ranked model has a rank of 1 for each criterion, and

the second ranked model has a rank of 2 for each criterion).

Continuing with the NAM-only data sets, we see that the two

best-performing models for mission ID3 are of a different type

than those for mission ID6: while the former ones belong to

the class of models assuming no upper bound on the number

of failures that will eventually be observed, the latter ones

have such an upper bound.

When we examine the four data sets containing the failures

related to both BOHs and NAMs, we see that the preferred

type of model for the majority of these data sets is one

that assumes an upper bound on the number of failures that

will eventually be experienced. This observation would be

consistent with a situation in which the number of NAMs were

small compared to the number of BOHs. However, Table II

indicates that this is not the case – this fact as well as the result

that NAM data sets can exhibit reliability growth indicate that

we will need to more closely examine the development and

operations processes for these missions.

V. DISTRIBUTIONAL ANALYSIS

We now restrict the analysis to those data sets for which

the Laplace test could not reject the no-trend hypothesis. For

each of these data sets, all TTFs observed may have been

sampled from distributions sharing the same expected value.

Assuming more specifically that within a data set all TTFs

are independently and identically distributed (iid), it is of high

interest to identify (an appropriate model for) each underlying

TTF distribution.

To this end, we employ a number of parametric distributions

that have often been used to model TTF data, namely the

Weibull distribution with cumulative distribution function (cdf)

F (t) = 1− exp

[

−

(

t

θ

)k
]

and the gamma distribution with cdf

F (t) =
1

Γ(k)θk

∫

t

0

xk−1 exp
(

−

x

θ

)

dx.

For both distributions, θ > 0 is the scale parameter and

k > 0 is the shape parameter. Also, each of these distributions

features a decreasing (increasing) failure rate if the shape

parameter is smaller (larger) than one. For k = 1, either of the

distributions is reduced to the exponential distribution (with

mean θ and constant failure rate 1/θ), the third parametric

model included in our analysis.

We use maximum likelihood estimation to fit the three

distributions to each of the data sets. While this method de-

termines the parameter value(s) for which it is most plausible

that the observed data were generated by the respective model,

it is possible that even the fitted model does not represent the

data well.

A popular approach to evaluating the goodness of fit is

the Kolmogorov-Smirnov (KS) test. In its original form, it

tests the null hypothesis that a data set constitutes iid samples

from a certain continuous distribution with known parameters;

the cdf F0(t) of this hypothesized distribution is thus fully

specified. Under these circumstances, the distribution of the

KS test statistic, derived by multiplying the square root of the

sample size n with the maximum absolute deviation between

F0(t) and the empirical cdf, depends on n, but it does neither

depend on the type of the hypothesized distribution nor on its

parameter values. Regardless of the hypothesis tested, it is thus

possible to make a test decision based on the critical values

contained in one table, and implemented in many statistical

tools.

However, this is different if some or all of the parameter

values have to be estimated. While the results by David



TABLE VIII
KS TEST STATISTICS, BEST CANDIDATE MODELS AND THEIR RESPECTIVE FAILURE RATE BEHAVIOR

Data set KS (exponential) KS (Weibull) KS (gamma) Best candidate model θ̂ k̂ Failure rate

ID1 BOH+NAM 1.337 1.186 0.565 gamma 173.4 0.572 decreasing

ID5 BOH+NAM 1.777 1.101 0.816 gamma 114.0 0.419 decreasing

ID7 BOH+NAM 1.515 1.514 1.041 gamma 4.514 0.636 decreasing

ID8 BOH+NAM 0.980 1.665 0.544 gamma 11.37 0.776 decreasing

ID1 BOH 1.423 0.956 0.576 Weibull 90.84 0.568 decreasing

ID2 BOH 1.123 1.753 0.659 gamma 44.97 0.720 decreasing

ID3 BOH 0.655 0.863 0.767 exponential 194.9 — constant

ID5 BOH 1.713 1.023 0.773 gamma 136.2 0.406 decreasing

ID6 BOH 0.863 1.021 0.689 gamma 185.8 0.593 decreasing

ID7 BOH 1.410 1.424 0.809 gamma 5.693 0.588 decreasing

ID8 BOH 0.744 1.184 0.814 exponential 13.70 — constant

ID1 NAM 1.201 0.858 0.646 Weibull 179.8 0.591 decreasing

ID2 NAM 1.258 1.707 0.926 gamma 82.58 0.679 decreasing

ID4 NAM 0.513 1.101 0.500 exponential 78.31 — constant

ID7 NAM 0.440 0.707 0.471 exponential 17.33 — constant

ID8 NAM 0.987 0.928 0.988 exponential 23.56 — constant

and Johnson [39] imply that the distribution of the KS test

statistic does not depend on the unknown parameters as long

as they are location or scale parameters estimated via the

maximum likelihood method, it does depend on the type of the

distribution in the null hypothesis. For each type of distribution

tested a different set of critical values is required.

Using Monte Carlo simulations with 5000 repetitions, Lil-

liefors [40] calculated critical values of the KS test statistic

for testing an exponential distribution with unknown mean θ.

Durbin [41] derived exact expressions for these critical values,

and tabulated them for sample sizes n between two and 100.

He also showed that a compact approximation due to Stephens

and published by Pearson and Hartley [42, p. 359] is quite

accurate, especially for large sample sizes. For n > 100, we

will therefore employ this approximation.

As noted above, the Weibull distribution includes a shape

parameter k. However, Chandra et al. [43] have shown that

testing whether a sample x1, ..., xn is from a Weibull distri-

bution with unknown θ and k is equivalent to testing whether

− lnx1, ...,− lnxn have been sampled from an extreme-value

distribution with unknown location parameter ξ = − ln θ and

scale δ = 1/k. The critical values of the related KS test

statistics, tabulated by Chandra et al. for various sample sizes

based on Monte Carlo simulations with 10000 repetitions, do

not depend on these parameters.

If the shape parameter of the gamma distribution needs to

be estimated, then the distribution of the KS statistic depends

on the true value of k [44, p. 151]. Critical values derived

via Monte Carlo simulations employing one specific k, like

the ones carried out by Tadikamalla [45] for k = 1, are thus

applicable only when the true k (or its maximum likelihood

estimate k̂) is close to this value. While Kulinskaya [46]

presented an algorithm for calculate the asymptotic distribution

of the KS test statistic based on k or k̂, we do not know of

any work discussing how to analytically obtain critical values

for a given finite sample size n and a specific (estimated)

shape parameter value. For each of the data sets in our study,

we therefore use a Monte Carlo simulation (with 100000

repetitions) to compute critical values of the KS test statistic

for testing the null hypothesis of a gamma distribution with

shape k̂ (the maximum likelihood estimate derived from this

data set), with n equaling the respective sample size.

Columns 2–4 of Table VIII contain the KS test statistics

obtained for all data sets when testing the hypotheses that

the TTFs are iid samples from the exponential, the Weibull,

and the gamma distribution. Indicated in bold type are those

values significant at a 99% confidence level; i.e., the null

hypothesis that the respective distribution generated the TTFs

can be rejected at a type I error level of 1%. There is no

data set for which all three parametric models are rejected; in

several cases, two or even all three distributions are retained as

“candidate models”. However, if the exponential distribution

is among the candidate models, the fact that it is a special

case of the Weibull and the gamma distribution begs the ques-

tion whether these more complicated distributions are indeed

needed. To determine the best model among the candidate

models, we employ the Akaike information criterion (AIC),

calculated as [47]

AIC = −2 · ln(maximum likelihood) + 2 · p;

it balances the maximum log-likelihood value attained, repre-

senting the model fit, with the number of model parameters

p, thus penalizing for a higher model complexity. In Table

VIII, column 5 indicates the best candidate model for each

data set, i.e., the one with the lowest AIC value. Moreover, in

columns 6 and 7 we list the maximum likelihood estimates of

θ and, where applicable, of k calculated for this model. Finally,

column 8 explicitly shows whether the fitted best model has

a constant, an increasing, or a decreasing failure rate.

From the table, we can see that for all BOH+NAM data



sets without an overall trend, the TTFs are best modeled

with gamma distributions featuring a decreasing failure rate.

However, for mission ID7 this decreasing failure rate can be

attributed to the Bohrbugs only; the best fit to the ID7 NAM

data set is achieved by the exponential distribution. Since the

exponential distribution is the best model for both the BOH

and the NAM data set of mission ID8, the decreasing failure

rate obtained for the combined TTFs data set seems to be an

artifact of not separating between the fault types responsible

for the failures. Again, as highlighted in the trend analysis, it

is thus advisable to take into account the underlying fault type

instead of studying the TTFs of the pooled failures.

According to the best candidate models fitted, most of the

BOH-only data sets show a decreasing failure rate; although

there is no overall trend in the TTFs sequences, after a failure

occurrence the tendency that another failure will occur (given

that it has not yet done so) is a declining function of the

waiting time. Only for two of the BOH data sets the failure

rate tends to be constant. This is different for the TTFs related

to non-aging-related Mandelbugs, where three of the five data

sets without a trend are best modeled with an exponential

distribution.

All in all, there are thus five data sets that do not seem

to feature a trend and where the TTFs might be indepen-

dent realizations of identical, exponentially-distributed random

variables. This suggests that for these data sets the failure times

can be modeled with a homogeneous Poisson process.

VI. DISCUSSION AND CONCLUSION

Table III indicates that earlier missions (ID1–ID4) are more

likely to exhibit reliability growth during operations than more

recent missions (ID5–ID8). The following possibilities are

being explored:

• Space mission on-board software is becoming larger

and implements more functionality. For the more recent

missions, this may increase the likelihood that more faults

are left in the software after launch. Although faults

may still be repaired as they are detected, the missions’

operational profile may be such that previously unseen

faults continue to be exposed over the missions’ lifetimes

at a rate that effectively counteracts the repair rate.

• On-board software for recent missions may be modified

more during mission operations. Robotic planetary ex-

ploration spacecraft do not need to be launched with the

complete set of functionality required to perform their

planned tasks at their destination – the software may be

updated en-route or even after reaching the destination

to perform its tasks more effectively. For example, the

GALILEO on-board software was extensively modified

after reaching Jupiter to compensate for the malfunction-

ing high-gain downlink antenna, and the Voyager 2 on-

board software was modified during cruise interval to

compensate for the low-light environment of Neptune.

More frequent updates can introduce more faults into

the on-board software during operations, increasing the

effective fault discovery rate.

Table VIII shows that the exponential and gamma models

are candidate models for all but two of the data sets for

which the Laplace test did not indicate reliability growth at

the 1% significance level. For BOHs only, the gamma model

indicating a decreasing failure rate is the best candidate in

four cases, the exponential model indicating a constant failure

rate is the best candidate in two cases, and the Weibull model

indicating a decreasing failure rate is the best candidate in

one case. For NAMs only, the exponential model indicating

a constant failure rate is the best candidate in three cases,

and the gamma and Weibull models indicating a decreasing

failure rate are the best candidates in one case each. These

observations indicate that our initial conjecture about the way

in which the proportions of BOHs and NAMs change during

a mission applies in some situations, but not consistently.

Two possibilities come to mind. For the first, note that our

conjecture holds for more of the later missions than for earlier

missions – for the later missions, less of the missions’ lifetimes

have been observed, and we may not yet have observed a

large enough portion of the later missions’ lifetimes to see the

eventual decrease in the NAMs failure rate as we do for the

earlier missions. A second possibility is the one already given

above: on-board software for recent missions may be more

extensively modified than that for earlier missions.

For the BOHs and NAMs taken together, the gamma model

indicating a decreasing failure rate is the best candidate in all

four cases. This is consistent with results of our earlier work

[5] indicating that the proportion of BOHs observed during

operations is significantly larger than the proportion of NAMs.

In this case, even if the failure rate of the NAMs remains

constant, the total failure rate will decrease if the proportion

of BOHs is larger than that of the NAMs. Since BOHs should

be easier to find and repair than NAMs, this suggests that

there may be opportunities to improve the effectiveness of

fault identification activities during development.

We are conducting more detailed analyses of the missions’

characteristics to explore these possibilities in more detail, and

to draw conclusions about the maintenance, fault tolerance,

and failure mitigation methods employed.
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