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Abstract account the uncertainty of the estimates by using intesral e

timation has not been fully discussed. The most commonly
In this paper, we present a variational Bayesian (VB) applied interval estimation technique is based on the akntr
approach to computing the interval estimates for non- limit theorem, assuming the availability of a large number
homogeneous Poisson process (NHPP) software reliabil- of samples [12]. However, in real-world testing the number
ity models. This approach is an approximate method that of software failures observed is usually not large enough to
can produce analytically tractable posterior distributi. justify the application of the central limit theorem.
We present simple iterative algorithms to compute the ap-  On the other hand, Bayesian approaches can produce in-
proximate posterior distributions for the parameters oé th  terval estimates even in the case of small sample sizes, by
gamma-type NHPP-based software reliability model using utilizing prior knowledge [15]. Since the posterior distri
either individual failure time data or grouped data. In pution is derived from both the prior distribution of the pa-
numerical examples, the accuracy of this VB approach is rameters and the likelihood of the observed data, Bayesian
compared with the interval estimates based on conventionalstatistics contains the likelihood-based statisticallysis
Bayesian approaches, i.e., Laplace approximation, Markov (such as maximum likelihood estimation) from a mathe-
chain Monte Carlo (MCMC) method, and numerical inte- matical point of view. In the Bayesian framework, inter-
gration. The proposed VB approach provides almost the va| estimates are derived from the quantiles of the posterio
same accuracy as MCMC, while its computational burden distribution. The calculation is based on the analytical ex
is much lower. pression for the posterior distribution, if such an expigss

is feasible. For example, Meinhold and Singpurwalla [11]
Keywords: Software reliability, non-homogeneous Poisson present the explicit form for the posterior distributiortfie
process, interval estimation, variational Bayes Jelinski-Moranda model [6].

However, for almost all SRMs the posterior distribution
1. Introduction is mathematically complicated; therefore, it usually reeed
to be either simulated or approximated. Kuo and Yang [8, 9]
Software reliability is one of the most important metrics propose the application of the Markov chain Monte Carlo
of software quality. During the last three decades, many (MCMC) approach to compute the posterior distributions
software reliability models (SRMs) have been proposed in several types of NHPP-based SRMs. This approach can
[10]. In particular, SRMs based on the non-homogeneousprovide very accurate results if a large number of param-
Poisson process (NHPP) have gained much popularity foreter samples is generated. However, the time required for
describing the stochastic development of the number of fail computing such large samples can get very long. Yin and
ures experienced over time. Trivedi [20] use direct numerical integration in the coritex
Much of the past research in software reliability model- of Bayesian analysis of the Goel-Okumoto model [5] and
ing has focused on the point estimation of the model pa- the delayed S-shaped model [18]. While direct numerical
rameters as well as the reliability itself. How to take into integration can produce very accurate results, it is valner
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able to round-off and truncation errors. Multiple-preaisi Moreover, the failure time%¥7y, Ys, ..., Yy of all N faults
arithmetic can partially reduce the round-off errors, Inett  are assumed to be independent and identically distributed
problem of truncation errors remains. To overcome these(i.i.d.), following a general distribution with parametesc-
computational problems, Okamued al. [13] propose a  tor 6y, G(-;6y). These assumptions imply tha{ (¢), the
variational Bayesian (VB) approach for the Goel-Okumoto number of failure occurrences experienced in the time in-
model [5]. While this VB approach leads to a simple al- terval(0, ¢], has a Poisson probability mass function,
gorithm, its underlying assumptions are too restrictive fo

Eggieving a good approximation of the posterior distribu- P(M(t) =m) = A;?!m exp(—A(t)), )

In this paper, we improve upon the previous_work re- with expected valué\(t) = woG(t; 65). Hence, the mean
lated to the VB approach [13] in three ways: Firstly, we y4)ye function in the NHPP-based SRMs can be completely
relax the central assumption in the VB approach, which en- characterized by only the failure time distributi6iit; 6).
hances the accuracy of the approximation. While the com-gq example, an exponential failure time distribution Ead
putation time required by the proposed method is still eSS4 the Goel-Okumoto model [5], while the delayed S-
than for the MCMC approach, its accuracy is comparable to shaped model [18] is obtained by assuming t4t; 8,)
the one attained by MCMC. An additional advantage over is the distribution function of a 2-stage Erlang distributi
MCMC is that the posterior distribution resulting from our Software reliability is defined as the probability that no
approach is analytically tractable. Secondly, we increasegyjjyre occurs in a prefixed time interval. In the NHPP-

the set of applicable models by presenting a VB algorithm | 55eq SRMs, the software reliabilifj(t + | t) for time
for the gamma-type NHPP-based SRM, which contains theperiod(t t + u] is given by

Goel-Okumoto model and the delayed S-shaped model as

special cases. Thirdly, we extend the applicability of the  R(¢t +u | t) = P(M(t +u) — M(t) = 0) (3)

VB approach to the grouped data case. While almost all

previgLFJ)s results for tr?e Barl)yesian estimation of SRMs have = exp (— woG(t + u; Bo) +woG(t: 00)).

relied on failure time data, grouped data are easier toatolle . . .

and thus more widely available. The derivation of methods 3. PoInt estimation

for the analysis of grouped data is therefore important from

a practical point of view. Usually, when NHPP-based SRMs are applied, point es-
The rest of this paper is organized as follows: Section timates for the model parameters are determined based on

2 describes NHPP-based SRMs of the finite failures cat-the observed failure data. The most commonly used tech-

egory. In Section 3, we discuss the point estimation of nigue is maximum likelihood estimation. The maximum

NHPP-based SRMs, which is fundamental to the interval likelihood estimates (MLEs) of the model parameters are

estimation. Section 4 is devoted to conventional Bayesianthose parameter values for which the likelihood functien at

interval estimation. In Section 5, we propose a new VB ap- tains its maximum. Since the likelihood function depends

proach for estimating NHPP-based SRMs. In Section 6, we0n the data structure, our discussion of the MLEs distin-

carry out numerical experiments to compare the applicationguishes between two kinds of data: failure time data, and

of this VB approach to the estimation of the Goel-Okumoto grouped data.

model with the results obtained by conventional Bayesian ~LetDr = {T1,..., Ty .)} be the ordered set of failure

approaches; these comparisons are conducted for both failtimes experienced before tintg; i.e., 0 < 77 < --- <

ure time data and grouped data. Finally, the paper concluded 1:(:.) < t. are the firstV/ (¢.) order statistics of the failure

with a brief summary of the results and an outlook on our timesYi, ..., Yy. Given the parametets, andéy, the log-

future research in Section 7. likelihood for the failure time dat® is

M(te)
2. NHPP-based software reliability models log P(Dr|wo, 09) = Z log g(T;; 60) + M (t.)logwo
=1
Consider NHPP-based SRMs of the finite failures cate- —woG(te; 0o), (4)
gory. According to this model class, the number of faults
present in the software at the beginning of testiNg,fol-
lows a Poisson probability mass function with expected

whereg(t; 6y) is the probability density function connected
to the failure time distributiotdz(¢; 8,). We use the proba-
bility measureP(-) to indicate the probability density func-

valuew: tion in the case of a continuous random variable and the
Wi probability mass function in the case of a discrete random
P(N=n)= P exp(—wo) forn=0,1,.... (1) variable.
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Let D¢ = {Xi,..., X} denote the grouped data for 4. Bayesian interval estimation
a time sequencgy = 0 < s; < --- < Sk, WhereX;
represents the number of failures experienced during the
time interval(s;_1, s;]. For the grouped dat®, the log-
likelihood is given by

For many software products, only a small number of fail-
ure data points are available. In such cases, Bayesian es-
timation is a more effective method than MLE-based ap-
proaches for deriving interval estimates in SRMs. The main

log P(D¢|wo, 09) (5) challenge in Bayesian estimation is to derive the posterior
k distribution. If the posterior distribution is explicitlyiven,
= Z X log (G(s4;600) — G(si—1;00)) the interval estimates are obtained by evaluating the quan-
i=1 tile of posterior distribution. However, the posterior digy
k k is usually expressed in proportional form, like in Eq. (6).
+ Z X, logwy — Z log X;! — woG(sg; 09). Therefore, except for some specific cases, the calculation o
i=1 i=1 the posterior distribution is quite difficult both anallty
Based on the observed dda = {T = t1, ..., Thsi.) = and from the computational standpoint.
tm,} O Dg = {X; = x1,...,X; = z}, we can com-

pute the log-likelihood and find the maximum likelihood 4.1. Direct methods

estimatesvy/p and @y rp. Since Egs. (4) and (5) are The simplest approach is to evaluate Eq. (6) analytically
non-linear, Newton or quasi-Newton method is tradition- . numerically. Suppose that the failure imes .. ., Y

ally applied to derive the M!‘ES' i Recently, Okamura et {510,y an exponential distribution with probability detsi
al. [14] proposed a powerful iteration scheme based on theg,tion g(t: ) = Be~Pt. Given the failure time data
EM (Expectation-Maximization) algorithm to compute the Dr = {1 _ t1,. .., Tarey) = tm. }, the joint posterior
MLEs for almost all NHPP-based SRMs. This technique is density for the parameteazseandﬁ can be written as
especially suitable for use in automated reliability pcedi

tion tools. P(w, B|Dr)  P(w, B)wMte) gM(te)

The framework of Bayesian statistics produces some- M(t.)
what different point estimates. Bayesian estimation is em- X exp ( -f Z T, —w(l— eﬁt6)> (8)
ployed to make use of prior knowledge. The key idea is i=1

to regard the parameters as random variables and to emTq derive an interval estimate from this expression, we have
body the prior knowledge via so-called prior distributions to determine the normalizing constant in the equation. Yin
for these parameters. So far, we have usgdindfy to  and Trivedi [20] discuss the interval estimation based on
denote the fixed but unknown parameter values.dLahd  numerical integration. When using this method, the upper
6 denote the corresponding random variables. According toand |ower limits chosen for the area of integration strongly
Bayes’ theorem, the relationship between the prior density affect the interval estimates. Choosing too wide a range can
P(w,0), the likelihoodP(D|w, §) and the posterior density  cause numerical exceptions like underflows; a too narrow
P(w,0|D) is as follows: range, on the other hand, leads to an underestimation of the

1 normalizing constant.

P(w,0]D) = & - P(Dlw, 6)P(w,0)

 P(Dlw,0)P(w, ), ©6) 4.2. Laplace approximation

where C' is a normalizing constant ensuring that the to- ~ Theidea behind the Laplace approximation is to approx-
tal probability is one. This equation shows how the prior imate the joint posterior distribution of the parameters by
knowledge is updated via the informati@h Although the a multivariate normal distribution. In general, the MAP
Bayesian estimation produces a Comp]ete posterior densinﬁstimates and the second derivatives of the pOSterior dis-
instead of single parameter estimates, point estimates caffibution evaluated at the MAP estimates are used as the
easily be derived. For example, the maximum a posterior mean vector and the variance-covariance matrix of the ap-
(MAP) estimates are those parameter values for which theProximating multivariate normal distribution, respeetiy.

posterior density - or its logarithm - is maximized:; i.e., If a flat prior density (i.e., a constant density over therenti
. joint parameter domain) is used, the Laplace approximation
(Omap,Onap) = argmax{ log P(D|w = wo, 8 = 6o) is reduced to the MLE-based derivation of confidence inter-
wo,00 vals discussed in [19]. The Laplace approximation does not
+log P(w = wp, 8 = 00)}. @) rt_aquire complif:atgd computatio.naI. prc_)cedures. However,
since the multivariate normal distribution cannot account

Alternatively, the first moments of the posterior distribat for skewness, the accuracy of the approximation is low in
can also be used as point estimates. many cases.
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4.3. Markov chain Monte Carlo like MCMC methods, it derives closed analytical forms for
the posterior distributions.

The Markov chain Monte Carlo (MCMC) approach is Consider the two data sefsandl/, corresponding to ob-
the most popular and versatile method to evaluate the posserved and unobserved information, respectively. Note tha
terior distribution. Instead of an analytical expression f  the data set®, I/ together contain the complete informa-
the posterior distribution, the method uses sampling datation on the ordered software failure times < --- < T,
generated from this posterior distribution. The main idea whereN is again the total number of faults. Denoting the
behind the MCMC approach is to derive samples from the set of model parameters hy = {w, 8}, the marginal log-
joint posterior distribution of the model parameters bgalt  likelihood of D can be obtained from the complete likeli-
natingly applying conditional marginal densities related  hood P(D,u|u) and the prior density?(p):
the joint posterior distribution. _

MCMC methods for NHPP-based SRMs are discussed log P(D) = 1Og// P(D,U, p)dUdp
by Kuo and Yang [8, 9]. For example, suppose that the
failure times follow an exponential distribution, and thize _ 1og//P DUl
prior distribution is the non-informative flat density. Let ’
the random variabl&/ = N — M (t.) denote the residual

number of faults at the end of testing. Given the failure time Here we usef P(A, B)dA to represent the calculation of
dataDr = {T1 = Thrr,) = me}, Kuo and Yang the marginal probability measure for the random varidhle

That is, if A is a discrete random variable, the correspond-
_ _ ing operation is the summation &( A, B) over all possible
N | w, 3 ~ Poissonge~Ft), (9)  values ofA. Otherwise, ifA is a continuous random vari-

w| N ~ Gammafn, + N, 1), (10) able, the operation reduces to the integraPgd, B) over

— Me — the domain ofA.

BIN ~ Gammafn, > ;2 ti+ Nite), (1) Let P,(-) be an arbitrary probability measure. From
where ~ indicates the probability distribution. Also, Jensen’s inequality, we have
‘Poisson@)’ and ‘Gammal, ¢)’ represent the Poisson dis-

P(p)dUdp. (12)

[8] propose the following Gibbs sampling scheme:

tribution with meana and the Gamma distribution with logP(D 1Og// D U H)dud

shape parametérand scale parameter In the MCMC P,U, p)

approach, we start from provisional values doandg and (D U, ) _

generate new samples based on the above sampling scheme = o (U, 1) log ——-— <~ P,(U, ) P Mdw= TP, (13)

using the current parameter values. Repeating this proce-
dure, we obtain samples from the joint posterior distriiti ~ WhereF [, ] is a functional of?, (U, ). From Eq. (13), the
of the parameters. difference between the marginal log-likelihood@find the
By introducing the residual number of faultd], Kuo  functional# can be obtained as follows:

and Yang are able to reduce the computational cost of sam-
pling. However, to derive interval estimates, we have to logP(D) — F[P)]

determine quantile points from the sampling data. Unlike //P U, p)l P,U, p) )
the computation of moments, the computation of quantiles PU,pu|D)

from samples usually requires a large sample size [2]. From
P yred d P [2] The right-hand side of Eq. (14) represents the Kullback-

a computational point of view, the derivation of interval es Leibler dist bet 7 dth terior densit
timates via the MCMC approach is therefore not efficient. eibler distance betweeR, (U4, 1) an '€ posteriordensity
P(U, p|D). Hence the problem of minimizing the differ-

Moreover, the MCMC methods developed in [8, 9] require :
failure time data. The application of MCMC to grouped ncelogP(D) N FLPu] with re_spect tOI.DU U, ) amoqnts
approximating the posterior density (i, u|D) with

data requires general-purpose sampling methods such a&o losel ible. Th babili
the Metropolis-Hastings algorithm [3], which is even more P, (U, 1) as closely as possible. € probability measure
P, is often called avariational posterior

computationally intensive. o _

In the most general application of variational Bayes,
the following assumption is made about the approximating
variational posterior density:

(14)

5. Variational Bayesian approach

5.1. Variational posterior for NHPP-based P,(U, p) = P,(U) Py (). (15)
SRMs
In fact, this is also the assumption used in [13]. However,
The variational Bayesian (VB) approach is based on the Eq. (15) implies that the unobserved data is independent of
variational approximation to the posterior distributidum- the parameters. This assumption imposes a hard restriction
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on the variational posterior density. The unobserved dataStep 3: Evaluate P,(N), the unnormalized form of the
U contains information about the total number of faults variational posterior density,(N), at eachN €
This information influences the posterior distribution. We [Me, Nmaz), and approximate the probability mass
therefore refine the assumption in Eq. (15) by separating function P, (N) by P,(N )/ Do P, (i).

the unobserved datdinto the total number of faultd” and

the other informatiorT; i.e.,i — {T, N'}: Step 4 If-the probgbility mass aIIgcated to the vgmgaw

by this approximated probability mass functiBpn( V)

P,U,p)=P,(T,N,u) = P,(T|N)P,(t|N)P,(N). is smaller than the toleranegi.e., if P,(nmq4.) < €,
(16) go to Step 5. Otherwise, increasg . and go to Step

This equation represents the conditional independence re- 2.
Iat|0nsh|p betweefl and the model parameters, given that )
N is fixed. From this assumption, the optimal variational SteP5: ReturnP,(u) =3y P, (p|N)P,(N) as the opti-

posterior densities maximizing the functio&lP, ] are mal variational posterior density.
This algorithm approximates the variational posterior-den
P,(T|N) x exp </PU(N|N) log P(D, T, N|u)du> sity while simultaneously trying to determine an adequate
upper boundn,,., for the value of N. As shown later,
= exp (EMN{lOgP(D,T,NW)D, (17) P,(N) is not a closed form ofv. There_fore, in Step 3
the appropriateness of,,... iS checked via the (approxi-

mated) probability mas#®, (N). The approach taken here

Py(p|N) is a heuristic and has the potential for further improvement
o P(p)exp </PU(T|N) 1ogP(D,T,N|u)dT> 5.2. Computational steps in the VB algo-
rithm
= P(p) exp (ET\N {1OgP(D’T’N|“)D’ (18) We now assume that the failure tim&s, ..., Yy are
i.i.d., each following a gamma distribution with scale pa-
and . : :
rameters and fixed shape parametey; i.e., their common
N x exp <//PU(T|N)PU(M|N) marginal probability density function is given by
6a0t04071 _pt
9Gam(t; 56 = € ) 20
o (DTNm)()m) cemlli0: ) = "Fag) 20
Py(T|N) P, (p|N) wherel'(-) denotes the standard gamma function. This class
P(D, T, N|u)P(k) of gamma-type NHPP-based SRMs contains both the Goel-
= exp (ETMN log Po(TIN) P (V) ) Okumoto model [5] and the delayed S-shaped model [18].
a The model parameters to be estimated.aends3. To sim-

=: P,(N), (19) plify the computations, the independent prior distribntio
. ) for the parameters andg are chosen to be gamma distribu-
where E, v[-] and Er| ] are the conditional expectations  {iong with parametersn.,, ¢.,) and(mg, ¢;), respectively.
with respect top and 7 under the variational posterior For the complete datéD, 7, N} = {T} < --- < Ty},

densities, provided tha&\_] i_s given. Al_so, E’_ﬁu\_N[']_ = the complete log-likelihood under the giverandg is
E7|n[Eun[]]. The variational posterior distribution of

the parameter vector becomes the mixture-type distributio  logP(D, 7, N | w, 3) (21)

of the conditional variational posterior distributions gof
Py(p) dZNh (N|]hv w(N). he foll I N N
Based on this scheme, we propose the following genera 4 .

VB algorithm: + (a0 —1) ZIOng B ﬁZTZ — NlogI'(ao).

i=1 i=1

= —w+ Nlogw+ Naglog 8

Step 1:  Set the range of the total number of fauNsto
[Me, Nmaz], Wherem, (> 0) is the number of pre-
viously observed failures, and,, ., is a sufficiently
large number. Py(w, 3| N) x P(w)P(B)™N gNe=wCrin (22)

Step 2: Compute the conditional variational posterior den- N _
sities of 7 and u, Egs. (17) and (18), for eacN € where (r\n = Ern {Zizl Tz:| . Based on the conju-
[Me, Nmaz)- gate gamma prior distributions far and g, the variational

From Eq. (18), we have the following variational posterior
density for the parametetsand:
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posterior distributions of these parameters are obtaised a  The variational posterior densify,(N) can also be de-
gamma distributions with parametefs,, + N, ¢, + 1) rived from the complete log-likelihood. Based on the ex-
and(mgs + Nao, ¢ + (1| ), respectively. Moreover, from  pected operations -] and Er|y[-], we obtain
Eq. (17), the general form of the variational posterior den-

a. (17), the g P (me + N)D(mg + Nag)

sity of 7 is obtained as P,(N) x
) o ™o ¥ (5 + G e s
N
1
P,(T|IN) am (Ti; o, , 23 x C(N) - > ) (28)
T EQG S €518 exp(=EpnCrin)

wherets v = E,,v[3]. Note that the concrete form of the whereC(N) is the normalizing constant appearing in the
variational posterior density is determined afferand 7 denominator of the conditional variational posterior digns
are specified. P,(T|N). The form ofC(NN) depends on the data structure.

Given the total number of faultd/, the computational N the case of failure time data, we get

step for deriving the variational posterior densities rhain me

consists of the computation of the expected valyeg and C(N) = H 9cam(ti; a0, &g N)

{sn- Basically, these expected values can be computed i=1

from non-linear equations. Since the variational posterio X GGam(te;ao,gmN)N*mE/(N —me)l.  (29)

density of7 depends on the data structure, this paper pro-

vides the non-linear equations o, and¢ sy for both For grouped data, the normalizing factor is given by

failure time data and grouped data under the gamma prior k

distribution for3. C(N) = H AGGam (i, si—1; @0, &N )" (30)
Consider the failure time dat®r = {71 = t1,..., i=1

Tar(t.) = tm. } coOllected until timet.. Then(r y andés X GGam(sk; 0, §ﬁ‘N)N_Ef:1 T /(N — Zle x;).

can be calculated via the following equations:

me = 6. Numerical experiments
= 34y 4 = me)a0 T 20 11, Eyy) P
T|IN = i = B )
i=1 &aIN Gaam(te; @0,p|v) In this section, we investigate the efficacy of our varia-
(24) tional Bayesian approach. To this end, we use the System
and ma+ N 17 data collected during the system test phase of a military
EpiN = AT (25) application [4]. The data is available in two forms:
P+ Cri Dr: failure time dat isti f the failure ti (
. B B . failure time data consisting of the failure times (mea-
On the other hand, given .the grouped di¥g = {X, = sured in wall-clock seconds) for all 38 failures experi-
x1,..., X = xy} for the time sequence) = 0 < 1 <

. ing th hase.
- < sy, the expected valuesg y andég y are given by enced during the system test phase

D¢ grouped data consisting of the number of failure oc-

C i ziog AGGam(si,8i—1; a0 + 1,&3n) currences for each of the 64 working days of the sys-
TIN = 2o Eon AGGam (i 5i-1:00,E57) tem test phase.
: Vel The Goel-Okumoto model is applied to the above data sets.
N — y i GaGam 5 1, . .
+ ( 2iz1 %1) G (ski 0 + €B|N), Moreover, we assume the following two scenarios about
oI Gaam(sk; o0, &p|v) 26) prior information:
26

Info: The prior information consists of good guesses of
parameters. In the failure time data case, the mean
and standard deviation of the prior distributions are
(50, 15.8) forw and (1.0e-5, 3.2e-6) fof. In the
grouped data case, the prior distribution®fs dif-

. ferent; its mean an ndar viation are given
In the case of the Goel-Okumoto model (i.@g, = 1) erent; its mean and standard deviation are given by

and the availability of failure time data, the non-lineanagq (3.3e-2,1.1e-2).

tion can explicitly be solved. For the other cases, we need toNolnfo: No informative prior information about the pa-
apply numerical techniques to solve the simultaneous equa- rameters is available. Therefore, flat prior densities on
tions. The simplest way is successive substitution. Such a the parameters are used. The estimates are thus only
method is guaranteed to have the global convergence prop-  based on the likelihood resulting from the observed
erty [1]. data.

and o = mg + N
N b+ G

where AGgam(si, si—1;20,83y) is the increment of
G Gam(t; 20, &g ) for time period(s; 1, s4].

(27)
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Table 1. Moments of approximate posterior distributions fo r Dr and Dg.

D and Info D¢ and Info
E[w] E[3] Var(w) Var(3) Cov(w, ) E[w] E[5] Var(w) Var(3) Cov(w, B)
NINT 41.78 1.11E-05 37.69 4.26E-12  -2.13E-06 NINT 48.63  2.57E-02 65.35 3.51E-05 -2.20E-02
LAPL | 40.69 1.10E-05 36.07 4.20E-12  -1.88E-06 LAPL | 47.08 2.50E-02 60.21 3.53E-05 -2.15E-02
-2.6% -1.6% -4.3% -1.5% -11.6% -3.2% -2.6% -7.9% 0.4% -2.5%
MCMC | 41.82 1.11E-05 37.50 4.27E-12 -2.21E-06 MCMC | 48.68 2.56E-02 65.49 3.46E-05 -2.18E-02
0.1% -0.2% -0.5% 0.3% 3.8% 0.1% -0.4% 0.2% -1.6% -1.1%
VB1 41.37  1.14E-05 34.47 2.60E-12 0 VB1 47.11  2.64E-02 39.26 1.23E-05 0
-1.0% 1.8% -8.5% -39.0% 100.0% -3.1% 2.8% -39.9% -64.9% -100.0%
VB2 41.75 1.12E-05 37.57 4.15E-12  -2.08E-06 VB2 48.39  2.59E-02 63.90 3.31E-05 -2.13E-02
-0.1% 0.2% -0.3% -2.5% -2.3% -0.5% 0.8% -2.2% -5.9% -3.1%
‘D7 and Nolnfo D¢ and Nolnfo
E|w] E[3] Var(w) Var(3) Cov(w, B) Elw] E[3] Var(w) Var(3) Cov(w, )

NINT | 40.66 1.23E-05 44.62 6.83E-12  -3.23E-06 NINT 116.04 1.62E-02 2.65E+04 9.40E-05 -8.86E-01
LAPL | 39.26 1.22E-05 41.44 6.56E-12  -2.41E-06 LAPL 53.48 1.94E-02 2.37E+02 8.31E-05 -1.16E-01

-3.5% -1.3% -7.1% -4.0% -25.5% -53.9% 19.4% -99.1% -11.6% -86.9%
MCMC | 39.80 1.18E-05 44.11 6.84E-12  -3.78E-06MCMC | 1.56E+03 1.03E-02 1.13E+07 9.88E-05 -1.53E+01
-2.1% -4.1% -1.1% 0.2% 17.0% 1245.8% -36.3% 42653.5% 5.1% 1627.8%
VB1 39.20 1.22E-05 39.20 3.82E-12 0 VB1 50.82 2.12E-02 5.08E+01  8.86E-06 0
-3.6% -0.8% -12.1% -44.0% -100.0% -56.2% 30.8% -99.8% -90.6% -100.0%
VB2 39.83 1.19E-05 44.61 6.62E-12  -3.56E-06 VB2 90.50 1.64E-02 1.09E+04 7.77E-05 -5.15E-01
-2.0% -3.7% 0.0% -3.1% 10.1% -22.0% 1.1% -59.1% -17.3% -41.8%

In the following, we compare the inteval estimation re- sample size of 20000 gives us 95% confidence that the em-
sults for numerical integration (NINT), Laplace approxi- pirical 2.5%-quantile lies between the theoretical 2.4%g a
mation (LAPL), Markov chain Monte Carlo (MCMC), the 2.6%-quantiles [2].
variational Bayesian approach proposed in [13] (VB1), and
the variational Bayesian approach proposed here (VB2).

We implement all of these methods using Mathematica
As noted before, one issue in numerical integration is the
adequate choice of the area of integration. In our imple-
mentation of NINT, for each parameter the upper and lower
limits of integration are determined based on the 0.5%- and
99.5%-quantiles of the respective marginal distributien d
rived for VB2: While each lower limit is chosen as the cor-

Analyzing the results for all methods, we first investi-
gate their approximation accuracy from the viewpoint of the
entire posterior distribution. Table 1 presents the means,
variances and covariances of the approximate joint poste-
rior distributions ofw and 3, obtained for failure time data
Dr or grouped dat®. Although there can be numeri-
cal errors in the application of NINT (such as those con-
nected to the truncation of the area of integration), we as-

. 0 S - “~ sume that NINT provides the most accurate approximation.
responding 0.5%-quantile divided by two, the upper limit is Therefore, for all other methods we show the relative devia-

chosen as the respective 99.5%-quantile multiplied by 1.5« f0m the results obtained by NINT. Except for e-
The numerical integration uses the multiple-precisiothari Nolnfo case, the first two moments calculated for NINT,

metic provided by Mathematica. MCMC and VB2 are similar. For higher moments - not
Under the MCMC method, we generate samples of shown in Table 1 - the results of NINT, MCMC and VB2

the posterior distribution from one long-range MCMC € are also almost same; for example, the relative deviatibns o
ries. In order to prevent dependence on the starting val- he third centralized momen{& — E[w])?] in the Dy-Info

ues of the parameters, the first 10000 samples (so-calle ase are 0.3% for MCMC and -0.9% for VB2. These results

1%%”'\;'%???653 are dlscarlde_d. Mltl)ref)\:jeri at 0n_|(3j/ eV(tary suggest that NINT, MCMC and VB2 provide similarly good
iterafion a sample Is collected, fo avold auto- approximations for the actual posterior distribution. @a t

correlatlon_ bet\_/ve_en t_he sample_s taken. The quantiles Ofother hand, LAPL and VB1 produce considerably worse re-
the posterior distribution are estimated by the correspond

. o . sults. For example, both methods seem to consistently un-
ing order statistics. For instance, the lower bound of the

ided 95% fid . Lo : dbvth derestimate the mean and the variance)ofAn important
two-side o confidence Interval foris estimated by the - 55 for the bad performance of VB1 seems to be its in-
500th smallest value ab in all 20000 samples collected,

e by th irical 2.50¢ ile. Th fth ability to model the correlation betweenand 5. While
I.€., by the empirical 2.ov-quantiie. The accuracy oTINeSe) zp| can account for this correlation, its joint posterior
estimates depends on the sample size.

In our example, thEensity is necessarily symmetric. Why this restrictiordiea
LWolfram Research, Incat t p: / / www. wol f ram cont to biased means far andg, can be explained with the help
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Figure 1. Approximate posterior distribution
for Dg and Info.

of Figure 1. This figure shows the contour plots for the joint
posterior densities approximated by NINT, LAPL, VB1 and
VB2, as well as the scatter plot using 10000 MCMC sam-
ples in theDg-Info case. The results for NINT, MCMC
and VB2 indicate that the marginal posterior densities of
andg are in fact right-skewed. Therefore, the MAP esti-

mates, around which the LAPL method centers its approxi-

mate posterior distribution, tend to be smaller than the tru

expected parameter values. Like Table 1, the diagrams in

Figure 1 suggest that NINT, MCMC and VB2 produce sim-
ilar results, while LAPL and VB1 cannot approximate the
joint posterior distribution as accurately as the otherhmet
ods.

According to Table 1, th®s-Nolnfo case seems to be
special, because NINT, MCMC and VB2 (as well as LAPL
and VB1) produce highly different results. As pointed out

In Proc. International Conference on Dependable Systems and Networks 2007, pages 698-707, 2007. © |EEE

Table 2. Two-sided 99% confidence intervals
(Dr).

| | Wiower Wupper | Blower Bupper

Info | NINT 27.74 59.45 | 6.27E-06 1.69E-05

LAPL 25.22 56.16 | 5.70E-06 1.63E-05
-9.1% -5.5% -9.1% -3.7%

MCMC| 27.81 59.28 | 6.20E-06 1.67E-05
0.2% -0.3% -1.1% -1.0%

VB1 27.81 58.05 | 7.63E-06 1.59E-05

0.2% -2.4% 21.7% -5.6%

VB2 27.73 59.38 | 6.41E-06 1.69E-05
-0.1% -0.1% 2.2% 0.0%

Nolnfo| NINT 25.68 60.35 | 5.98E-06 1.95E-05

LAPL 22.68 55.84 | 5.58E-06 1.88E-05
-11.7% -7.5% -6.6% -3.8%

MCMC| 24.88 59.59 | 5.53E-06 1.90E-05
-3.1% -1.3% -7.4% -2.9%

VB1 2495 57.20 | 6.92E-06 1.56E-05

-2.8% -5.2% 15.7% -20.0%

VB2 2495 59.68 | 5.68E-06 1.90E-05
-2.8% -1.1% -5.0% -2.7%

by several authors [7, 17, 20], in the absence of prior in-
formation accurate parameter estimates can only obtained
if the failure time data itself contains enough information
about the parameters. If this is not the case, the posterior
distribution becomes a long-tailed distribution with larg
variances and covariances. Since the grouped Bgtaf
System 17 cannot be fitted by the Goel-Okumoto model as
well as the failure time dat®7, it contains less information
about the parameters thdn-. Therefore, in the absence
of an informative prior distribution, none of the Bayesian
methods provides accurate estimates.

The interval estimates for the parameterand 5 ob-
tained by the different approaches confirm our findings. Ta-
bles 2 and 3 present the two-sided 99% confidence intervals
for Dr andD¢, respectively. As before, for LAPL, MCMC,
VB1 and VB2, we compute the relative deviations from the
results obtained for NINT. Again, with the exception of the
Dg-Nolnfo case, the results calculated by MCMC and VB2
are close to the ones derived by NINT. The fact that the in-
terval estimates calculated by LAPL are usually shifted to
the left is explained by the bias in the estimated expected
values discussed earlier. On the other hand, because VB1
underestimates the variances of the parameters, it tends to
derive interval estimates that are too narrow.

Since none of the methods produces reliable results in
theDs-Nolnfo case, we focus our attention on the Info case
for the rest of this paper.

We now discuss the statistical inference on the software
reliability. Tables 4 and 5 present the point estimates and
two-sided 99% confidence intervals of software reliability
for Dy andDg. The reliability is estimated for the time
intervals(t., t. + u], whereu € {1000, 10000} for Dy and
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Table 3. Two-sided 99% confidence intervals

Table 4. Interval estimation for software relia-

(Dg). bility ( D and Info).
| | Wiower Wupper Brower Bupper | reliability  lower bound  upper bound
Info | NINT | 31.20 73.80 1.27E-02  4.29E-02 w = 1000 NINT| 0.9791 0.9483 0.9946
LAPL | 27.09 67.06 9.72E-03  4.03E-02 LAPL| 0.9802 0.9580 <1.0024>
-13.2%  -9.1% -23.7% -6.0% MCMQ  0.9790 0.9474 0.9945
MCMC| 3L.15 73.46 T1.20E-02 4.23E-02 VB1 | 0.9806 0.9607 0.9933
-0.2% -0.5% 1.3% -1.3% VB2 | 0.9792 0.9492 0.9946
VB1 | 3254 64.81 9.93E-03 1.84E-02 w=10000 NINT| 0.8200 0.5974 0.9513
43% -12.2% 221%  -57.1% LAPL| 0.8268 0.6448 <1.0087>
VB2 | 31.10 73.18 1.35E-02 4.28E-02 MCMC|  0.8192 0.5919 0.9502
-0.3% -0.8% 5.6% -0.3% VBl | 0.8314 0.6795 0.9391
Nolnfo| NINT | 31.86 788.14 7.59E-04 4.25E-02 VB2 | 0.8210 0.6029 0.9513
LAPL | 13.84 9312 | <-4.11E-03 4.29E-02
-56.6% -88.2% -641.9% 0.9%
MCMC| 3251 1.85E+04| 3.06E-05 3.83E-02
2.1% 2242.6% -96.0% -9.8% Table 5. Interval estimation for software relia-
VB1 34.33 71.05 1.43E-02 2.97E-02 b|||ty ( DG and |nf0)_
7.8% -91.0% 1788.1%  -30.1%
VB2 3111  583.35 1.06E-03  4.09E-02 | reliability  lower bound  upper bound
2.4% -26.0% 39.3% -3.7%
wu=1 NINT| 0.7907 0.6618 0.9015
LAPL| 0.7678 0.6281 0.9075
MCMQ  0.7901 0.6629 0.8998
u € {1,5} for Dg. X VBL | 0.7987 0.7202 0.8688
For NINT, the point estimaté?(t. + u|t.) and thep- VB2 | 0.7923 0.6637 0.9015
quantilerz,* (. +ult.) of software reliability are computed u=5 NINT| 0.3382 0.1353 0.6198
ia the following equations: LAPL| 0.2829 0.0283 0.5374
viat : MCMC  0.3369 0.1359 0.6149
VB1 | 0.3480 0.2080 0.5173
VB2 | 0.3413 0.1374 0.6197

Rt +ult) = [ [ explow(e
0 0

— e Pt P(w, BD)dwdB,  (31)

tegration, we focus only on MCMC and VB2. The com-
putational speed of MCMC and VB2 directly depends on
the number of samples and the truncation paipt,,., re-
spectively. Tables 6 and 7 show the computation times
Since Eqg. (32) is non-linear, we use the bisection methodfor the MCMC and VB2 algorithms we implemented us-
to deriveR;l(te + ult.). For VB1 and VB2,P(w, 3|D) ing Mathematica. In MCMC, we measure the computa-
is replaced by the respective variational posterior dgnsit tion time to collect 20000 samples; taking into account
The point estimate in LAPL is obtained by directly plugging the burn-in samples and the fact that a sample is only col-
WMAP andﬁkIAp into Eqg. (3), and the confidence interval lected at every tenth iteration, the total number of Pois-
is computed from the first derivatives of software reliapili  son and gamma random variates to be generated is 630000
with respect tav ands. For MCMC, we calculate the soft-  (=3-(10000+1620000)). In the grouped data case, in which
ware reliability for all 20000 parameter samples and derive we additionally use data augmentation [16] at each stage, to
the point estimate and the interval estimate as the samplegenerate the 38 failure times, the total number of Poisson,
mean and the respective order statistics of all reliabitiy gamma and exponential random variates to be computed
ues computed. is 8610000 (=(3+38§10000+1620000)). The computation
The results for NINT, MCMC and VB2 shown in Tables time for VB2 is measured for the truncation pointg,,. €
4 and 5 are almost the same for both point estimation and{100, 200, 500, 1000}. Here we use successive substitu-
interval estimation. Thus the accuracies of the software re tion to solve the non-linear equations (24)—(27). Even for
liability estimates can be considered high. The other two n,,,, = 1000, the computation time of VB2 is consid-
methods produce considerably worse results. Especiallyerably smaller than the one for MCMC. However, such a
since VB1 underestimates the variance of the model param-arge value ofn,,,,, iS not necessary, as can be seen from
eters, the estimated intervals of software reliabilityikat the respective probability massBs(1n,q. ) shown in Table
by this method tend to be too narrow. 7. For example, given a tolerance of=5e-15, the crite-
Finally, we discuss computational speed. Since the com-rion P, (nm..) < ¢ is already fulfilled forn,,., = 200.
putation of NINT relies on VB2 to detect the area of in- The values in Table 7 suggest that the computation time of

/ /71(”@,1“ i P(w, B|D)dwodB =p.  (32)
0 g Ry (tetulte

e—Bte _oc—B(tetu)
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Table 6. Computation time for MCMC.

Data | random variates  time (sec)
Dy and Info 630000 541.97
D¢ and Info 8610000 4036.38

Table 7. Computation time for VB2.

Data | nmaz Po(nmae)  time (sec)
D and Info 100 2.35e-11 0.56
200 4.48e-21 1.44
500 3.67e-46 6.59
1000 1.94e-86 23.22
D¢ and Info 100 1.49e-06 13.28
200 2.66e-15 58.32
500 6.56e-40 369.53
1000 4.85e-80 1429.41

our current VB2 algorithm increases disproportionallyhwit
Nmaz- THiS iS because the complexity of the problem to

solve the non-linear equations becomes larger,as, in-

creases. If we use fast convergence methods like the New-
ton method to solve the non-linear equations, then the com-

putation time can be expected to be proportional.tQ...

7. Conclusions

This paper proposes a new VB approach to approxi- [12]
mate the posterior distribution in the Bayesian estimation
NHPP-based SRMs. In particular, we have presented a con-
crete numerical procedure to compute the variational poste [1
rior distributions for gamma-type NHPP-based SRMs, for
both failure time data and grouped data. In numerical ex-
periments, we have compared our VB approach with con- 14]
ventional approximate methods. Our results indicate that
the proposed method provides almost the same accuracy as
MCMC, while its computational burden is much lower. For
the future, we are planning to develop methods for the com- [15]
putation of confidence intervals using analytical expamsio

technigues.
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