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Abstract

In this paper, we present a variational Bayesian (VB)
approach to computing the interval estimates for non-
homogeneous Poisson process (NHPP) software reliabil-
ity models. This approach is an approximate method that
can produce analytically tractable posterior distributions.
We present simple iterative algorithms to compute the ap-
proximate posterior distributions for the parameters of the
gamma-type NHPP-based software reliability model using
either individual failure time data or grouped data. In
numerical examples, the accuracy of this VB approach is
compared with the interval estimates based on conventional
Bayesian approaches, i.e., Laplace approximation, Markov
chain Monte Carlo (MCMC) method, and numerical inte-
gration. The proposed VB approach provides almost the
same accuracy as MCMC, while its computational burden
is much lower.

Keywords: Software reliability, non-homogeneousPoisson
process, interval estimation, variational Bayes

1. Introduction

Software reliability is one of the most important metrics
of software quality. During the last three decades, many
software reliability models (SRMs) have been proposed
[10]. In particular, SRMs based on the non-homogeneous
Poisson process (NHPP) have gained much popularity for
describing the stochastic development of the number of fail-
ures experienced over time.

Much of the past research in software reliability model-
ing has focused on the point estimation of the model pa-
rameters as well as the reliability itself. How to take into

account the uncertainty of the estimates by using interval es-
timation has not been fully discussed. The most commonly
applied interval estimation technique is based on the central
limit theorem, assuming the availability of a large number
of samples [12]. However, in real-world testing the number
of software failures observed is usually not large enough to
justify the application of the central limit theorem.

On the other hand, Bayesian approaches can produce in-
terval estimates even in the case of small sample sizes, by
utilizing prior knowledge [15]. Since the posterior distri-
bution is derived from both the prior distribution of the pa-
rameters and the likelihood of the observed data, Bayesian
statistics contains the likelihood-based statistical analysis
(such as maximum likelihood estimation) from a mathe-
matical point of view. In the Bayesian framework, inter-
val estimates are derived from the quantiles of the posterior
distribution. The calculation is based on the analytical ex-
pression for the posterior distribution, if such an expression
is feasible. For example, Meinhold and Singpurwalla [11]
present the explicit form for the posterior distribution inthe
Jelinski-Moranda model [6].

However, for almost all SRMs the posterior distribution
is mathematically complicated; therefore, it usually needs
to be either simulated or approximated. Kuo and Yang [8, 9]
propose the application of the Markov chain Monte Carlo
(MCMC) approach to compute the posterior distributions
in several types of NHPP-based SRMs. This approach can
provide very accurate results if a large number of param-
eter samples is generated. However, the time required for
computing such large samples can get very long. Yin and
Trivedi [20] use direct numerical integration in the context
of Bayesian analysis of the Goel-Okumoto model [5] and
the delayed S-shaped model [18]. While direct numerical
integration can produce very accurate results, it is vulner-
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able to round-off and truncation errors. Multiple-precision
arithmetic can partially reduce the round-off errors, but the
problem of truncation errors remains. To overcome these
computational problems, Okamuraet al. [13] propose a
variational Bayesian (VB) approach for the Goel-Okumoto
model [5]. While this VB approach leads to a simple al-
gorithm, its underlying assumptions are too restrictive for
achieving a good approximation of the posterior distribu-
tion.

In this paper, we improve upon the previous work re-
lated to the VB approach [13] in three ways: Firstly, we
relax the central assumption in the VB approach, which en-
hances the accuracy of the approximation. While the com-
putation time required by the proposed method is still less
than for the MCMC approach, its accuracy is comparable to
the one attained by MCMC. An additional advantage over
MCMC is that the posterior distribution resulting from our
approach is analytically tractable. Secondly, we increase
the set of applicable models by presenting a VB algorithm
for the gamma-type NHPP-based SRM, which contains the
Goel-Okumoto model and the delayed S-shaped model as
special cases. Thirdly, we extend the applicability of the
VB approach to the grouped data case. While almost all
previous results for the Bayesian estimation of SRMs have
relied on failure time data, grouped data are easier to collect
and thus more widely available. The derivation of methods
for the analysis of grouped data is therefore important from
a practical point of view.

The rest of this paper is organized as follows: Section
2 describes NHPP-based SRMs of the finite failures cat-
egory. In Section 3, we discuss the point estimation of
NHPP-based SRMs, which is fundamental to the interval
estimation. Section 4 is devoted to conventional Bayesian
interval estimation. In Section 5, we propose a new VB ap-
proach for estimating NHPP-based SRMs. In Section 6, we
carry out numerical experiments to compare the application
of this VB approach to the estimation of the Goel-Okumoto
model with the results obtained by conventional Bayesian
approaches; these comparisons are conducted for both fail-
ure time data and grouped data. Finally, the paper concludes
with a brief summary of the results and an outlook on our
future research in Section 7.

2. NHPP-based software reliability models

Consider NHPP-based SRMs of the finite failures cate-
gory. According to this model class, the number of faults
present in the software at the beginning of testing,N , fol-
lows a Poisson probability mass function with expected
valueω0:

P (N = n) =
ωn

0

n!
exp(−ω0) for n = 0, 1, . . . . (1)

Moreover, the failure timesY1, Y2, . . . , YN of all N faults
are assumed to be independent and identically distributed
(i.i.d.), following a general distribution with parametervec-
tor θ0, G(·; θ0). These assumptions imply thatM(t), the
number of failure occurrences experienced in the time in-
terval(0, t], has a Poisson probability mass function,

P (M(t) = m) =
Λ(t)m

m!
exp(−Λ(t)), (2)

with expected valueΛ(t) = ω0G(t; θ0). Hence, the mean
value function in the NHPP-based SRMs can be completely
characterized by only the failure time distributionG(t; θ0).
For example, an exponential failure time distribution leads
to the Goel-Okumoto model [5], while the delayed S-
shaped model [18] is obtained by assuming thatG(t; θ0)
is the distribution function of a 2-stage Erlang distribution.

Software reliability is defined as the probability that no
failure occurs in a prefixed time interval. In the NHPP-
based SRMs, the software reliabilityR(t + u | t) for time
period(t, t + u] is given by

R(t + u | t) = P (M(t + u) − M(t) = 0) (3)

= exp
(

− ω0G(t + u; θ0) + ω0G(t; θ0)
)

.

3. Point estimation

Usually, when NHPP-based SRMs are applied, point es-
timates for the model parameters are determined based on
the observed failure data. The most commonly used tech-
nique is maximum likelihood estimation. The maximum
likelihood estimates (MLEs) of the model parameters are
those parameter values for which the likelihood function at-
tains its maximum. Since the likelihood function depends
on the data structure, our discussion of the MLEs distin-
guishes between two kinds of data: failure time data, and
grouped data.

LetDT = {T1, . . . , TM(te)} be the ordered set of failure
times experienced before timete; i.e., 0 < T1 < · · · <
TM(te) ≤ te are the firstM(te) order statistics of the failure
timesY1, . . . , YN . Given the parametersω0 andθ0, the log-
likelihood for the failure time dataDT is

log P (DT |ω0, θ0) =

M(te)
∑

i=1

log g(Ti; θ0) + M(te) log ω0

− ω0G(te; θ0), (4)

whereg(t; θ0) is the probability density function connected
to the failure time distributionG(t; θ0). We use the proba-
bility measureP (·) to indicate the probability density func-
tion in the case of a continuous random variable and the
probability mass function in the case of a discrete random
variable.
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Let DG = {X1, . . . , Xk} denote the grouped data for
a time sequences0 ≡ 0 < s1 < · · · < sk, whereXi

represents the number of failures experienced during the
time interval(si−1, si]. For the grouped dataDG, the log-
likelihood is given by

log P (DG|ω0, θ0) (5)

=

k
∑

i=1

Xi log (G(si; θ0) − G(si−1; θ0))

+

k
∑

i=1

Xi log ω0 −

k
∑

i=1

log Xi! − ω0G(sk; θ0).

Based on the observed dataDT = {T1 = t1, . . . , TM(te) =
tme

} or DG = {X1 = x1, . . . , Xk = xk}, we can com-
pute the log-likelihood and find the maximum likelihood
estimateŝωMLE and θ̂MLE . Since Eqs. (4) and (5) are
non-linear, Newton or quasi-Newton method is tradition-
ally applied to derive the MLEs. Recently, Okamura et
al. [14] proposed a powerful iteration scheme based on the
EM (Expectation-Maximization) algorithm to compute the
MLEs for almost all NHPP-based SRMs. This technique is
especially suitable for use in automated reliability predic-
tion tools.

The framework of Bayesian statistics produces some-
what different point estimates. Bayesian estimation is em-
ployed to make use of prior knowledge. The key idea is
to regard the parameters as random variables and to em-
body the prior knowledge via so-called prior distributions
for these parameters. So far, we have usedω0 andθ0 to
denote the fixed but unknown parameter values. Letω and
θ denote the corresponding random variables. According to
Bayes’ theorem, the relationship between the prior density
P (ω, θ), the likelihoodP (D|ω, θ) and the posterior density
P (ω, θ|D) is as follows:

P (ω, θ|D) =
1

C
· P (D|ω, θ)P (ω, θ)

∝ P (D|ω, θ)P (ω, θ), (6)

whereC is a normalizing constant ensuring that the to-
tal probability is one. This equation shows how the prior
knowledge is updated via the informationD. Although the
Bayesian estimation produces a complete posterior density
instead of single parameter estimates, point estimates can
easily be derived. For example, the maximum a posterior
(MAP) estimates are those parameter values for which the
posterior density - or its logarithm - is maximized; i.e.,

(ω̂MAP , θ̂MAP ) = argmax
ω0,θ0

{

log P (D|ω = ω0, θ = θ0)

+ log P (ω = ω0, θ = θ0)
}

. (7)

Alternatively, the first moments of the posterior distribution
can also be used as point estimates.

4. Bayesian interval estimation

For many software products, only a small number of fail-
ure data points are available. In such cases, Bayesian es-
timation is a more effective method than MLE-based ap-
proaches for deriving interval estimates in SRMs. The main
challenge in Bayesian estimation is to derive the posterior
distribution. If the posterior distribution is explicitlygiven,
the interval estimates are obtained by evaluating the quan-
tile of posterior distribution. However, the posterior density
is usually expressed in proportional form, like in Eq. (6).
Therefore, except for some specific cases, the calculation of
the posterior distribution is quite difficult both analytically
and from the computational standpoint.

4.1. Direct methods

The simplest approach is to evaluate Eq. (6) analytically
or numerically. Suppose that the failure timesY1, . . . , YN

follow an exponential distribution with probability density
function g(t; β) = βe−βt. Given the failure time data
DT = {T1 = t1, . . . , TM(te) = tme

}, the joint posterior
density for the parametersω andβ can be written as

P (ω, β|DT ) ∝ P (ω, β)ωM(te)βM(te)

× exp

(

− β

M(te)
∑

i=1

Ti − ω(1 − e−βte)

)

. (8)

To derive an interval estimate from this expression, we have
to determine the normalizing constant in the equation. Yin
and Trivedi [20] discuss the interval estimation based on
numerical integration. When using this method, the upper
and lower limits chosen for the area of integration strongly
affect the interval estimates. Choosing too wide a range can
cause numerical exceptions like underflows; a too narrow
range, on the other hand, leads to an underestimation of the
normalizing constant.

4.2. Laplace approximation

The idea behind the Laplace approximation is to approx-
imate the joint posterior distribution of the parameters by
a multivariate normal distribution. In general, the MAP
estimates and the second derivatives of the posterior dis-
tribution evaluated at the MAP estimates are used as the
mean vector and the variance-covariance matrix of the ap-
proximating multivariate normal distribution, respectively.
If a flat prior density (i.e., a constant density over the entire
joint parameter domain) is used, the Laplace approximation
is reduced to the MLE-based derivation of confidence inter-
vals discussed in [19]. The Laplace approximation does not
require complicated computational procedures. However,
since the multivariate normal distribution cannot account
for skewness, the accuracy of the approximation is low in
many cases.
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4.3. Markov chain Monte Carlo

The Markov chain Monte Carlo (MCMC) approach is
the most popular and versatile method to evaluate the pos-
terior distribution. Instead of an analytical expression for
the posterior distribution, the method uses sampling data
generated from this posterior distribution. The main idea
behind the MCMC approach is to derive samples from the
joint posterior distribution of the model parameters by alter-
natingly applying conditional marginal densities relatedto
the joint posterior distribution.

MCMC methods for NHPP-based SRMs are discussed
by Kuo and Yang [8, 9]. For example, suppose that the
failure times follow an exponential distribution, and thatthe
prior distribution is the non-informative flat density. Let
the random variableN = N − M(te) denote the residual
number of faults at the end of testing. Given the failure time
dataDT = {T1 = t1, . . . , TM(te) = me}, Kuo and Yang
[8] propose the following Gibbs sampling scheme:

N | ω, β ∼ Poisson(ωe−βte), (9)

ω | N ∼ Gamma(me + N , 1), (10)

β | N ∼ Gamma(me,
∑me

i=1 ti + Nte), (11)

where ∼ indicates the probability distribution. Also,
‘Poisson(a)’ and ‘Gamma(b, c)’ represent the Poisson dis-
tribution with meana and the Gamma distribution with
shape parameterb and scale parameterc. In the MCMC
approach, we start from provisional values forω andβ and
generate new samples based on the above sampling scheme,
using the current parameter values. Repeating this proce-
dure, we obtain samples from the joint posterior distribution
of the parameters.

By introducing the residual number of faults,̄N , Kuo
and Yang are able to reduce the computational cost of sam-
pling. However, to derive interval estimates, we have to
determine quantile points from the sampling data. Unlike
the computation of moments, the computation of quantiles
from samples usually requires a large sample size [2]. From
a computational point of view, the derivation of interval es-
timates via the MCMC approach is therefore not efficient.
Moreover, the MCMC methods developed in [8, 9] require
failure time data. The application of MCMC to grouped
data requires general-purpose sampling methods such as
the Metropolis-Hastings algorithm [3], which is even more
computationally intensive.

5. Variational Bayesian approach

5.1. Variational posterior for NHPP-based
SRMs

The variational Bayesian (VB) approach is based on the
variational approximation to the posterior distribution.Un-

like MCMC methods, it derives closed analytical forms for
the posterior distributions.

Consider the two data setsD andU , corresponding to ob-
served and unobserved information, respectively. Note that
the data setsD, U together contain the complete informa-
tion on the ordered software failure timesT1 < · · · < TN ,
whereN is again the total number of faults. Denoting the
set of model parameters byµ = {ω, θ}, the marginal log-
likelihood of D can be obtained from the complete likeli-
hoodP (D,U|µ) and the prior densityP (µ):

log P (D) = log

∫ ∫

P (D,U , µ)dUdµ

= log

∫ ∫

P (D,U|µ)P (µ)dUdµ. (12)

Here we use
∫

P (A, B)dA to represent the calculation of
the marginal probability measure for the random variableB.
That is, if A is a discrete random variable, the correspond-
ing operation is the summation ofP (A, B) over all possible
values ofA. Otherwise, ifA is a continuous random vari-
able, the operation reduces to the integral ofP (A, B) over
the domain ofA.

Let Pv(·) be an arbitrary probability measure. From
Jensen’s inequality, we have

logP (D) = log

∫ ∫

Pv(U , µ)
P (D,U , µ)

Pv(U , µ)
dUdµ

≥

∫ ∫

Pv(U , µ) log
P (D,U , µ)

Pv(U , µ)
dUdµ ≡ F [Pv], (13)

whereF [Pv] is a functional ofPv(U , µ). From Eq. (13), the
difference between the marginal log-likelihood ofD and the
functionalF can be obtained as follows:

logP (D) −F [Pv]

=

∫ ∫

Pv(U , µ) log
Pv(U , µ)

P (U , µ|D)
dUdµ. (14)

The right-hand side of Eq. (14) represents the Kullback-
Leibler distance betweenPv(U , µ) and the posterior density
P (U , µ|D). Hence the problem of minimizing the differ-
encelog P (D) − F [Pv] with respect toPv(U , µ) amounts
to approximating the posterior densityP (U , µ|D) with
Pv(U , µ) as closely as possible. The probability measure
Pv is often called avariational posterior.

In the most general application of variational Bayes,
the following assumption is made about the approximating
variational posterior density:

Pv(U , µ) = Pv(U)Pv(µ). (15)

In fact, this is also the assumption used in [13]. However,
Eq. (15) implies that the unobserved data is independent of
the parameters. This assumption imposes a hard restriction
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on the variational posterior density. The unobserved data
U contains information about the total number of faultsN .
This information influences the posterior distribution. We
therefore refine the assumption in Eq. (15) by separating
the unobserved dataU into the total number of faultsN and
the other informationT ; i.e.,U = {T , N}:

Pv(U , µ) = Pv(T , N, µ) = Pv(T |N)Pv(µ|N)Pv(N).
(16)

This equation represents the conditional independence re-
lationship betweenT and the model parameters, given that
N is fixed. From this assumption, the optimal variational
posterior densities maximizing the functionalF [Pv] are

Pv(T |N) ∝ exp

(

∫

Pv(µ|N) log P (D, T , N |µ)dµ

)

= exp
(

Eµ|N

[

log P (D, T , N |µ)
])

, (17)

Pv(µ|N)

∝ P (µ) exp

(

∫

Pv(T |N) log P (D, T , N |µ)dT

)

= P (µ) exp
(

ET |N

[

log P (D, T , N |µ)
])

, (18)

and

Pv(N) ∝ exp

(

∫ ∫

Pv(T |N)Pv(µ|N)

× log
P (D, T , N |µ)P (µ)

Pv(T |N)Pv(µ|N)
dT dµ

)

= exp

(

ET ,µ|N

[

log
P (D, T , N |µ)P (µ)

Pv(T |N)Pv(µ|N)

])

=: P̃v(N), (19)

where Eµ|N [·] and ET |N [·] are the conditional expectations
with respect toµ and T under the variational posterior
densities, provided thatN is given. Also, ET ,µ|N [·] =
ET |N [Eµ|N [·]]. The variational posterior distribution of
the parameter vector becomes the mixture-type distribution
of the conditional variational posterior distributions ofµ:
Pv(µ) =

∑

N Pv(µ|N)Pv(N).
Based on this scheme, we propose the following general

VB algorithm:

Step 1: Set the range of the total number of faultsN to
[me, nmax], whereme (≥ 0) is the number of pre-
viously observed failures, andnmax is a sufficiently
large number.

Step 2: Compute the conditional variational posterior den-
sities ofT andµ, Eqs. (17) and (18), for eachN ∈
[me, nmax].

Step 3: EvaluateP̃v(N), the unnormalized form of the
variational posterior densityPv(N), at eachN ∈
[me, nmax], and approximate the probability mass
functionPv(N) by P̃v(N)/

∑nmax

i=me
P̃v(i).

Step 4: If the probability mass allocated to the valuenmax

by this approximated probability mass functionPv(N)
is smaller than the toleranceε, i.e., if Pv(nmax) < ε,
go to Step 5. Otherwise, increasenmax and go to Step
2.

Step 5: ReturnPv(µ) =
∑

N Pv(µ|N)Pv(N) as the opti-
mal variational posterior density.

This algorithm approximates the variational posterior den-
sity while simultaneously trying to determine an adequate
upper boundnmax for the value ofN . As shown later,
Pv(N) is not a closed form ofN . Therefore, in Step 3
the appropriateness ofnmax is checked via the (approxi-
mated) probability massPv(N). The approach taken here
is a heuristic and has the potential for further improvement.

5.2. Computational steps in the VB algo-
rithm

We now assume that the failure timesY1, . . . , YN are
i.i.d., each following a gamma distribution with scale pa-
rameterβ and fixed shape parameterα0; i.e., their common
marginal probability density function is given by

gGam(t; α0, β) =
βα0tα0−1

Γ(α0)
e−βt, (20)

whereΓ(·) denotes the standard gamma function. This class
of gamma-type NHPP-based SRMs contains both the Goel-
Okumoto model [5] and the delayed S-shaped model [18].
The model parameters to be estimated areω andβ. To sim-
plify the computations, the independent prior distributions
for the parametersω andβ are chosen to be gamma distribu-
tions with parameters(mω, φω) and(mβ , φβ), respectively.

For the complete data{D, T , N} = {T1 < · · · < TN},
the complete log-likelihood under the givenω andβ is

logP (D, T , N | ω, β) (21)

= − ω + N log ω + Nα0 log β

+ (α0 − 1)

N
∑

i=1

log Ti − β

N
∑

i=1

Ti − N log Γ(α0).

From Eq. (18), we have the following variational posterior
density for the parametersω andβ:

Pv(ω, β | N) ∝ P (ω)P (β)ωNβNe−ω−ζT |N , (22)

where ζT |N = ET |N

[

∑N

i=1 Ti

]

. Based on the conju-

gate gamma prior distributions forω andβ, the variational
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posterior distributions of these parameters are obtained as
gamma distributions with parameters(mω + N, φω + 1)
and(mβ +Nα0, φβ + ζT |N ), respectively. Moreover, from
Eq. (17), the general form of the variational posterior den-
sity of T is obtained as

Pv(T |N) ∝

N
∏

i=1

gGam(Ti; α0, ξβ|N ), (23)

whereξβ|N = Eµ|N [β]. Note that the concrete form of the
variational posterior density is determined afterD andT
are specified.

Given the total number of faultsN , the computational
step for deriving the variational posterior densities mainly
consists of the computation of the expected valuesζT |N and
ξβ|N . Basically, these expected values can be computed
from non-linear equations. Since the variational posterior
density ofT depends on the data structure, this paper pro-
vides the non-linear equations ofζT |N andξβ|N for both
failure time data and grouped data under the gamma prior
distribution forβ.

Consider the failure time dataDT = {T1 = t1, . . . ,
TM(te) = tme

} collected until timete. ThenζT |N andξβ|N

can be calculated via the following equations:

ζT |N =

me
∑

i=1

ti +
(N − me)α0

ξβ|N

GGam(te; α0 + 1, ξβ|N)

GGam(te; α0, ξβ|N )
,

(24)
and

ξβ|N =
mβ + N

φβ + ζT |N
. (25)

On the other hand, given the grouped dataDG = {X1 =
x1, . . . , Xk = xk} for the time sequences0 ≡ 0 < s1 <
· · · < sk, the expected valuesζT |N andξβ|N are given by

ζT |N =

k
∑

i=1

xiα0

ξβ|N

∆GGam(si, si−1; α0 + 1, ξβ|N)

∆GGam(si, si−1; α0, ξβ|N)

+
(N −

∑k
i=1 xi)α0

ξβ|N

GGam(sk; α0 + 1, ξβ|N)

GGam(sk; α0, ξβ|N )
,

(26)

and
ξβ|N =

mβ + N

φβ + ζT |N
, (27)

where ∆GGam(si, si−1; α0, ξβ|N ) is the increment of
GGam(t; α0, ξβ|N ) for time period(si−1, si].

In the case of the Goel-Okumoto model (i.e.,α0 = 1)
and the availability of failure time data, the non-linear equa-
tion can explicitly be solved. For the other cases, we need to
apply numerical techniques to solve the simultaneous equa-
tions. The simplest way is successive substitution. Such a
method is guaranteed to have the global convergence prop-
erty [1].

The variational posterior densityPv(N) can also be de-
rived from the complete log-likelihood. Based on the ex-
pected operations Eµ[·] and ET |N [·], we obtain

Pv(N) ∝
Γ(mω + N)Γ(mβ + Nα0)

(φω + 1)mω+N (φβ + ζT |N )mβ+Nα0

× C(N) ·
1

ξNα0

β|N exp(−ξβ|NζT |N )
, (28)

whereC(N) is the normalizing constant appearing in the
denominator of the conditional variational posterior density
Pv(T |N). The form ofC(N) depends on the data structure.
In the case of failure time data, we get

C(N) =

me
∏

i=1

gGam(ti; α0, ξβ|N)

× GGam(te; α0, ξβ|N)N−me/(N − me)!. (29)

For grouped data, the normalizing factor is given by

C(N) =

k
∏

i=1

∆GGam(si, si−1; α0, ξβ|N)xi (30)

× GGam(sk; α0, ξβ|N )N−
P

k
i=1 xi/(N −

∑k

i=1 xi)!.

6. Numerical experiments

In this section, we investigate the efficacy of our varia-
tional Bayesian approach. To this end, we use the System
17 data collected during the system test phase of a military
application [4]. The data is available in two forms:

DT : failure time data consisting of the failure times (mea-
sured in wall-clock seconds) for all 38 failures experi-
enced during the system test phase.

DG: grouped data consisting of the number of failure oc-
currences for each of the 64 working days of the sys-
tem test phase.

The Goel-Okumoto model is applied to the above data sets.
Moreover, we assume the following two scenarios about
prior information:

Info: The prior information consists of good guesses of
parameters. In the failure time data case, the mean
and standard deviation of the prior distributions are
(50, 15.8) forω and (1.0e-5, 3.2e-6) forβ. In the
grouped data case, the prior distribution ofβ is dif-
ferent; its mean and standard deviation are given by
(3.3e-2, 1.1e-2).

NoInfo: No informative prior information about the pa-
rameters is available. Therefore, flat prior densities on
the parameters are used. The estimates are thus only
based on the likelihood resulting from the observed
data.
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Table 1. Moments of approximate posterior distributions fo r DT and DG.
DT and Info

E[ω] E[β] Var(ω) Var(β) Cov(ω, β)

NINT 41.78 1.11E-05 37.69 4.26E-12 -2.13E-06
LAPL 40.69 1.10E-05 36.07 4.20E-12 -1.88E-06

-2.6% -1.6% -4.3% -1.5% -11.6%
MCMC 41.82 1.11E-05 37.50 4.27E-12 -2.21E-06

0.1% -0.2% -0.5% 0.3% 3.8%
VB1 41.37 1.14E-05 34.47 2.60E-12 0

-1.0% 1.8% -8.5% -39.0% 100.0%
VB2 41.75 1.12E-05 37.57 4.15E-12 -2.08E-06

-0.1% 0.2% -0.3% -2.5% -2.3%

DG and Info
E[ω] E[β] Var(ω) Var(β) Cov(ω, β)

NINT 48.63 2.57E-02 65.35 3.51E-05 -2.20E-02
LAPL 47.08 2.50E-02 60.21 3.53E-05 -2.15E-02

-3.2% -2.6% -7.9% 0.4% -2.5%
MCMC 48.68 2.56E-02 65.49 3.46E-05 -2.18E-02

0.1% -0.4% 0.2% -1.6% -1.1%
VB1 47.11 2.64E-02 39.26 1.23E-05 0

-3.1% 2.8% -39.9% -64.9% -100.0%
VB2 48.39 2.59E-02 63.90 3.31E-05 -2.13E-02

-0.5% 0.8% -2.2% -5.9% -3.1%

DT and NoInfo
E[ω] E[β] Var(ω) Var(β) Cov(ω, β)

NINT 40.66 1.23E-05 44.62 6.83E-12 -3.23E-06
LAPL 39.26 1.22E-05 41.44 6.56E-12 -2.41E-06

-3.5% -1.3% -7.1% -4.0% -25.5%
MCMC 39.80 1.18E-05 44.11 6.84E-12 -3.78E-06

-2.1% -4.1% -1.1% 0.2% 17.0%
VB1 39.20 1.22E-05 39.20 3.82E-12 0

-3.6% -0.8% -12.1% -44.0% -100.0%
VB2 39.83 1.19E-05 44.61 6.62E-12 -3.56E-06

-2.0% -3.7% 0.0% -3.1% 10.1%

DG and NoInfo
E[ω] E[β] Var(ω) Var(β) Cov(ω, β)

NINT 116.04 1.62E-02 2.65E+04 9.40E-05 -8.86E-01
LAPL 53.48 1.94E-02 2.37E+02 8.31E-05 -1.16E-01

-53.9% 19.4% -99.1% -11.6% -86.9%
MCMC 1.56E+03 1.03E-02 1.13E+07 9.88E-05 -1.53E+01

1245.8% -36.3% 42653.5% 5.1% 1627.8%
VB1 50.82 2.12E-02 5.08E+01 8.86E-06 0

-56.2% 30.8% -99.8% -90.6% -100.0%
VB2 90.50 1.64E-02 1.09E+04 7.77E-05 -5.15E-01

-22.0% 1.1% -59.1% -17.3% -41.8%

In the following, we compare the inteval estimation re-
sults for numerical integration (NINT), Laplace approxi-
mation (LAPL), Markov chain Monte Carlo (MCMC), the
variational Bayesian approach proposed in [13] (VB1), and
the variational Bayesian approach proposed here (VB2).

We implement all of these methods using Mathematica1.
As noted before, one issue in numerical integration is the
adequate choice of the area of integration. In our imple-
mentation of NINT, for each parameter the upper and lower
limits of integration are determined based on the 0.5%- and
99.5%-quantiles of the respective marginal distribution de-
rived for VB2: While each lower limit is chosen as the cor-
responding 0.5%-quantile divided by two, the upper limit is
chosen as the respective 99.5%-quantile multiplied by 1.5.
The numerical integration uses the multiple-precision arith-
metic provided by Mathematica.

Under the MCMC method, we generate samples of
the posterior distribution from one long-range MCMC se-
ries. In order to prevent dependence on the starting val-
ues of the parameters, the first 10000 samples (so-called
“burn-in samples”) are discarded. Moreover, at only every
10th MCMC iteration a sample is collected, to avoid auto-
correlation between the samples taken. The quantiles of
the posterior distribution are estimated by the correspond-
ing order statistics. For instance, the lower bound of the
two-sided 95% confidence interval forω is estimated by the
500th smallest value ofω in all 20000 samples collected,
i.e., by the empirical 2.5%-quantile. The accuracy of these
estimates depends on the sample size. In our example, the

1Wolfram Research, Inc.http://www.wolfram.com/

sample size of 20000 gives us 95% confidence that the em-
pirical 2.5%-quantile lies between the theoretical 2.4%- and
2.6%-quantiles [2].

Analyzing the results for all methods, we first investi-
gate their approximation accuracy from the viewpoint of the
entire posterior distribution. Table 1 presents the means,
variances and covariances of the approximate joint poste-
rior distributions ofω andβ, obtained for failure time data
DT or grouped dataDG. Although there can be numeri-
cal errors in the application of NINT (such as those con-
nected to the truncation of the area of integration), we as-
sume that NINT provides the most accurate approximation.
Therefore, for all other methods we show the relative devia-
tions from the results obtained by NINT. Except for theDG-
NoInfo case, the first two moments calculated for NINT,
MCMC and VB2 are similar. For higher moments - not
shown in Table 1 - the results of NINT, MCMC and VB2
are also almost same; for example, the relative deviations of
the third centralized moment E[(ω−E[ω])3] in theDT -Info
case are 0.3% for MCMC and -0.9% for VB2. These results
suggest that NINT, MCMC and VB2 provide similarly good
approximations for the actual posterior distribution. On the
other hand, LAPL and VB1 produce considerably worse re-
sults. For example, both methods seem to consistently un-
derestimate the mean and the variance ofω. An important
reason for the bad performance of VB1 seems to be its in-
ability to model the correlation betweenω andβ. While
LAPL can account for this correlation, its joint posterior
density is necessarily symmetric. Why this restriction leads
to biased means forω andβ, can be explained with the help
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Figure 1. Approximate posterior distribution
for DG and Info.

of Figure 1. This figure shows the contour plots for the joint
posterior densities approximated by NINT, LAPL, VB1 and
VB2, as well as the scatter plot using 10000 MCMC sam-
ples in theDG-Info case. The results for NINT, MCMC
and VB2 indicate that the marginal posterior densities ofω
andβ are in fact right-skewed. Therefore, the MAP esti-
mates, around which the LAPL method centers its approxi-
mate posterior distribution, tend to be smaller than the true
expected parameter values. Like Table 1, the diagrams in
Figure 1 suggest that NINT, MCMC and VB2 produce sim-
ilar results, while LAPL and VB1 cannot approximate the
joint posterior distribution as accurately as the other meth-
ods.

According to Table 1, theDG-NoInfo case seems to be
special, because NINT, MCMC and VB2 (as well as LAPL
and VB1) produce highly different results. As pointed out

Table 2. Two-sided 99% confidence intervals
(DT ).

ωlower ωupper βlower βupper

Info NINT 27.74 59.45 6.27E-06 1.69E-05
LAPL 25.22 56.16 5.70E-06 1.63E-05

-9.1% -5.5% -9.1% -3.7%
MCMC 27.81 59.28 6.20E-06 1.67E-05

0.2% -0.3% -1.1% -1.0%
VB1 27.81 58.05 7.63E-06 1.59E-05

0.2% -2.4% 21.7% -5.6%
VB2 27.73 59.38 6.41E-06 1.69E-05

-0.1% -0.1% 2.2% 0.0%
NoInfo NINT 25.68 60.35 5.98E-06 1.95E-05

LAPL 22.68 55.84 5.58E-06 1.88E-05
-11.7% -7.5% -6.6% -3.8%

MCMC 24.88 59.59 5.53E-06 1.90E-05
-3.1% -1.3% -7.4% -2.9%

VB1 24.95 57.20 6.92E-06 1.56E-05
-2.8% -5.2% 15.7% -20.0%

VB2 24.95 59.68 5.68E-06 1.90E-05
-2.8% -1.1% -5.0% -2.7%

by several authors [7, 17, 20], in the absence of prior in-
formation accurate parameter estimates can only obtained
if the failure time data itself contains enough information
about the parameters. If this is not the case, the posterior
distribution becomes a long-tailed distribution with large
variances and covariances. Since the grouped dataDG of
System 17 cannot be fitted by the Goel-Okumoto model as
well as the failure time dataDT , it contains less information
about the parameters thanDT . Therefore, in the absence
of an informative prior distribution, none of the Bayesian
methods provides accurate estimates.

The interval estimates for the parametersω andβ ob-
tained by the different approaches confirm our findings. Ta-
bles 2 and 3 present the two-sided 99% confidence intervals
forDT andDG, respectively. As before, for LAPL, MCMC,
VB1 and VB2, we compute the relative deviations from the
results obtained for NINT. Again, with the exception of the
DG-NoInfo case, the results calculated by MCMC and VB2
are close to the ones derived by NINT. The fact that the in-
terval estimates calculated by LAPL are usually shifted to
the left is explained by the bias in the estimated expected
values discussed earlier. On the other hand, because VB1
underestimates the variances of the parameters, it tends to
derive interval estimates that are too narrow.

Since none of the methods produces reliable results in
theDG-NoInfo case, we focus our attention on the Info case
for the rest of this paper.

We now discuss the statistical inference on the software
reliability. Tables 4 and 5 present the point estimates and
two-sided 99% confidence intervals of software reliability
for DT andDG. The reliability is estimated for the time
intervals(te, te + u], whereu ∈ {1000, 10000} for DT and
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Table 3. Two-sided 99% confidence intervals
(DG).

ωlower ωupper βlower βupper

Info NINT 31.20 73.80 1.27E-02 4.29E-02
LAPL 27.09 67.06 9.72E-03 4.03E-02

-13.2% -9.1% -23.7% -6.0%
MCMC 31.15 73.46 1.29E-02 4.23E-02

-0.2% -0.5% 1.3% -1.3%
VB1 32.54 64.81 9.93E-03 1.84E-02

4.3% -12.2% -22.1% -57.1%
VB2 31.10 73.18 1.35E-02 4.28E-02

-0.3% -0.8% 5.6% -0.3%
NoInfo NINT 31.86 788.14 7.59E-04 4.25E-02

LAPL 13.84 93.12 <-4.11E-03> 4.29E-02
-56.6% -88.2% -641.9% 0.9%

MCMC 32.51 1.85E+04 3.06E-05 3.83E-02
2.1% 2242.6% -96.0% -9.8%

VB1 34.33 71.05 1.43E-02 2.97E-02
7.8% -91.0% 1788.1% -30.1%

VB2 31.11 583.35 1.06E-03 4.09E-02
-2.4% -26.0% 39.3% -3.7%

u ∈ {1, 5} for DG.
For NINT, the point estimatêR(te + u|te) and thep-

quantileR̂−1
p (te+u|te) of software reliability are computed

via the following equations:

R̂(te + u|te) =

∫ ∞

0

∫ ∞

0

exp{−ω(e−βte

− e−β(te+u))}P (ω, β|D)dωdβ, (31)

∫ ∞

0

∫ ∞

− log R̂
−1
p (te+u|te)

e−βte −e−β(te+u)

P (ω, β|D)dω0dβ = p. (32)

Since Eq. (32) is non-linear, we use the bisection method
to deriveR̂−1

p (te + u|te). For VB1 and VB2,P (ω, β|D)
is replaced by the respective variational posterior density.
The point estimate in LAPL is obtained by directly plugging
ω̂MAP andβ̂MAP into Eq. (3), and the confidence interval
is computed from the first derivatives of software reliability
with respect toω andβ. For MCMC, we calculate the soft-
ware reliability for all 20000 parameter samples and derive
the point estimate and the interval estimate as the sample
mean and the respective order statistics of all reliabilityval-
ues computed.

The results for NINT, MCMC and VB2 shown in Tables
4 and 5 are almost the same for both point estimation and
interval estimation. Thus the accuracies of the software re-
liability estimates can be considered high. The other two
methods produce considerably worse results. Especially,
since VB1 underestimates the variance of the model param-
eters, the estimated intervals of software reliability derived
by this method tend to be too narrow.

Finally, we discuss computational speed. Since the com-
putation of NINT relies on VB2 to detect the area of in-

Table 4. Interval estimation for software relia-
bility ( DT and Info).

reliability lower bound upper bound

u = 1000 NINT 0.9791 0.9483 0.9946
LAPL 0.9802 0.9580 <1.0024>

MCMC 0.9790 0.9474 0.9945
VB1 0.9806 0.9607 0.9933
VB2 0.9792 0.9492 0.9946

u = 10000 NINT 0.8200 0.5974 0.9513
LAPL 0.8268 0.6448 <1.0087>

MCMC 0.8192 0.5919 0.9502
VB1 0.8314 0.6795 0.9391
VB2 0.8210 0.6029 0.9513

Table 5. Interval estimation for software relia-
bility ( DG and Info).

reliability lower bound upper bound

u = 1 NINT 0.7907 0.6618 0.9015
LAPL 0.7678 0.6281 0.9075

MCMC 0.7901 0.6629 0.8998
VB1 0.7987 0.7202 0.8688
VB2 0.7923 0.6637 0.9015

u = 5 NINT 0.3382 0.1353 0.6198
LAPL 0.2829 0.0283 0.5374

MCMC 0.3369 0.1359 0.6149
VB1 0.3480 0.2080 0.5173
VB2 0.3413 0.1374 0.6197

tegration, we focus only on MCMC and VB2. The com-
putational speed of MCMC and VB2 directly depends on
the number of samples and the truncation pointnmax, re-
spectively. Tables 6 and 7 show the computation times
for the MCMC and VB2 algorithms we implemented us-
ing Mathematica. In MCMC, we measure the computa-
tion time to collect 20000 samples; taking into account
the burn-in samples and the fact that a sample is only col-
lected at every tenth iteration, the total number of Pois-
son and gamma random variates to be generated is 630000
(=3·(10000+10·20000)). In the grouped data case, in which
we additionally use data augmentation [16] at each stage, to
generate the 38 failure times, the total number of Poisson,
gamma and exponential random variates to be computed
is 8610000 (=(3+38)·(10000+10·20000)). The computation
time for VB2 is measured for the truncation pointsnmax ∈
{100, 200, 500, 1000}. Here we use successive substitu-
tion to solve the non-linear equations (24)–(27). Even for
nmax = 1000, the computation time of VB2 is consid-
erably smaller than the one for MCMC. However, such a
large value ofnmax is not necessary, as can be seen from
the respective probability massesPv(nmax) shown in Table
7. For example, given a tolerance ofε =5e-15, the crite-
rion Pv(nmax) < ε is already fulfilled fornmax = 200.
The values in Table 7 suggest that the computation time of
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Table 6. Computation time for MCMC.
Data random variates time (sec)

DT and Info 630000 541.97
DG and Info 8610000 4036.38

Table 7. Computation time for VB2.
Data nmax Pv(nmax) time (sec)

DT and Info 100 2.35e-11 0.56
200 4.48e-21 1.44
500 3.67e-46 6.59

1000 1.94e-86 23.22
DG and Info 100 1.49e-06 13.28

200 2.66e-15 58.32
500 6.56e-40 369.53

1000 4.85e-80 1429.41

our current VB2 algorithm increases disproportionally with
nmax. This is because the complexity of the problem to
solve the non-linear equations becomes larger asnmax in-
creases. If we use fast convergence methods like the New-
ton method to solve the non-linear equations, then the com-
putation time can be expected to be proportional tonmax.

7. Conclusions

This paper proposes a new VB approach to approxi-
mate the posterior distribution in the Bayesian estimationof
NHPP-based SRMs. In particular, we have presented a con-
crete numerical procedure to compute the variational poste-
rior distributions for gamma-type NHPP-based SRMs, for
both failure time data and grouped data. In numerical ex-
periments, we have compared our VB approach with con-
ventional approximate methods. Our results indicate that
the proposed method provides almost the same accuracy as
MCMC, while its computational burden is much lower. For
the future, we are planning to develop methods for the com-
putation of confidence intervals using analytical expansion
techniques.
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